Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(24): 25932-25944, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911731

RESUMO

Ferroptosis and apoptosis are programmed cell death pathways with distinct characteristics. Sometimes, cancer cells are aided by the induction of a different pathway, such as ferroptosis, when they develop chemoresistance and avoid apoptosis. Identifying the nanomedicine that targets dual pathways is considered as one of the best strategies for diverse cancer types. In our previous work, we synthesized gold nanoparticles (GNP) utilizing Gluconacetobacter liquefaciens in conjunction with compound K (CK) and coprisin (CopA3), yielding GNP-CK-CopA3. Here, we assessed the inhibitory effect of GNP-CK-CopA3 on AGS cells and the induction of apoptosis using Hoechst and PI, Annexin V-FITC/PI, and qRT-PCR. Subsequently, we conducted downstream proteomic analysis and molecular dynamic stimulation to identify the underlying molecular mechanisms. Our investigation of cultured AGS cells treated with varying concentrations of GNP-CK-CopA3 demonstrated the anticancer properties of these nanoparticles. Penetration of GNP-CK-CopA3 into AGS cells was visualized using an enhanced dark field microscope. Apoptosis induction was initially confirmed by treating AGS cells with GNP-CK-CopA3, as evidenced by staining with dyes such as Hoechst and PI. Additionally, mitochondrial disruption and cellular localization induced by GNP-CK-CopA3 were validated through Mito-tracker staining and transmission electron microscopy images. Annexin V-FITC/PI staining was used to distinguish early and late-stage apoptosis or necrosis based on fluorescence patterns. The gene expression of apoptotic markers indicated the initiation of cellular apoptosis. Further, proteomic analysis suggested that the treatment of GNP-CK-CopA3 to AGS cells led to the suppression of 439 proteins and the stimulation of 832 proteins. Among these, ferroptosis emerged as a significant interconnected pathway where glutathione peroxidase 4 (GPX4) and glutathione synthetase (GSS) were significant interacting proteins. Molecular docking and dynamic simulation studies confirmed the binding affinity and stability between CopA3 and CK with GSS and GPX4 proteins, suggesting the role of GNP-CK-CopA3 in ferroptosis induction. Overall, our study showed GNP-CK-CopA3 could play a dual role by inducing apoptosis and ferroptosis to induce AGS cell death.

2.
ACS Pharmacol Transl Sci ; 7(6): 1884-1900, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38898949

RESUMO

The PI3K/AKT/FOXO3 pathway is one of the most frequently involved signaling pathways in cancer, including breast cancer. Therefore, we synthesized a novel lysine-rich polypeptide (Lys-PP) using de novo assembly method and evaluated its anticancer effect. We characterized the structural and physicochemical properties of Lys-PP using various techniques. Later, we used integrated approaches such as in silico, in vitro, and in vivo analysis to confirm the anticancer and therapeutic effect of Lys-PP. First, RNA sequencing suggests Lys-PP disrupted the central carbon metabolic pathway through the modulation of prolactin signaling. Additionally, docking analysis also confirmed the significant association of PI3K/AKT and FOXO3 pathway to induce an apoptotic effect on cancer. Second, Lys-PP exhibited a significant cytotoxicity effect against MDA-MB-231 but no cytotoxic effects on RAW 264.7 and HEK-293, respectively. The cytotoxic effect of Lys-PP-induced apoptosis by an increase in FOXO3a protein expression and a decrease in PI3K/AKT pathway was confirmed by quantitative real-time polymerase chain reaction, immunoblotting, and fluorescent microscopy. Later, immunohistochemistry and hematoxylin and eosin staining on MDA-MD-231 showed increased FOXO3a expression and cell death in the xenograft mice model. Further, liver function, metabolic health, or lipid profile upon Lys-PP showed the absence of significant modulation in the biomarkers except for kidney-related biomarkers. Overall, our comprehensive study provides the first evidence of Lys-PP antibreast cancer action, which could serve as a potential treatment in an alternative or complementary medicine practice.

3.
Pharmacol Res ; 187: 106610, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521573

RESUMO

Gastric cancer (GC) occurs in the gastric mucosa, and its high morbidity and mortality make it an international health crisis. Therefore, novel drugs are needed for its treatment. The use of natural products and their components in cancer treatments has shown promise. Therefore, this study aimed to evaluate the effect of 8-paradol, a phenolic compound isolated from ginger (Zingiber officinale Roscoe), on GC and determine its underlying mechanisms of action. In this study, repeated column chromatography was conducted on ginger EtOH extract to isolate gingerol and its derivatives. The cytotoxicity of the eight ginger compounds underwent a (3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide) tetrazolium reduction (MTT) assay. 8-paradol showed the most potent cytotoxicity effect among the isolated ginger compounds. The underlying mechanism by which 8-paradol regulated specific proteins in AGS cells was evaluated by proteomic analysis. To validate the predicted mechanisms, AGS cells and thymus-deficient nude mice bearing AGS xenografts were used as in vitro and in vivo models of GC, respectively. The results showed that the 8-paradol promoted PINK1/Parkin-associated mitophagy, mediating cell apoptosis. Additionally, the inhibition of mitophagy by chloroquine (CQ) ameliorated 8-paradol-induced mitochondrial dysfunction and apoptosis, supporting a causative role for mitophagy in the 8-paradol-induced anticancer effect. Molecular docking results revealed the molecular interactions between 8-paradol and mitophagy-/ apoptosis-related proteins at the atomic level. Our study provides strong evidence that 8-paradol could act as a novel potential therapeutic agent to suppress the progression of GC by targeting mitophagy pathway.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Zingiber officinale , Camundongos , Animais , Humanos , Zingiber officinale/química , Zingiber officinale/metabolismo , Mitofagia , Neoplasias Gástricas/tratamento farmacológico , Camundongos Nus , Simulação de Acoplamento Molecular , Proteômica , Apoptose , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
ACS Omega ; 7(40): 35951-35960, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36249362

RESUMO

Nanotechnology-applied materials and related therapeutics have gained attention for treating inflammatory skin diseases. The beach rose (Rosa rugosa), belonging to the family Rosaceae, is a perennial, deciduous woody shrub endemic to northeastern Asia. In this study, R. rugosa-based gold nanoparticles (RR-AuNPs) were biologically synthesized under optimal conditions to explore their potential as anti-inflammatory agents for treating skin inflammation. The synthesized RR-AuNPs were analyzed using field emission-transmission electron microscopy, energy-dispersive X-ray spectrometry, selected-area electron diffraction, and X-ray diffraction. The uniformly well-structured AuNPs showed near-spherical and polygonal shapes. Cell viability evaluation and optical observation results showed that the RR-AuNPs were absorbed by human keratinocytes without causing cytotoxic effects. The effects of RR-AuNPs on the skin inflammatory response were investigated in human keratinocytes treated with tumor necrosis factor-α/interferon-γ (T + I). The results showed that T + I-stimulated increases in inflammatory mediators, including chemokines, interleukins, and reactive oxygen species, were significantly suppressed by RR-AuNP treatment in a concentration-dependent manner. The western blotting results indicated that the RR-AuNP-mediated anti-inflammatory effects were highly associated with the suppression of inflammatory signaling, mitogen-activated protein kinase, and nuclear factor-κB. These results demonstrate that plant extract-based AuNPs are novel anti-inflammatory candidates for topical application to treat skin inflammation.

5.
Int J Biol Sci ; 18(15): 5809-5826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263176

RESUMO

Plant extract-mediated synthesis of metal nanoparticles (NPs) is an eco-friendly and cost-effective biosynthesis method that is more suitable for biological applications than chemical ones. We prepared novel gold NPs (AuNPs), Cirsium japonicum mediated-AuNPs (CJ-AuNPs), using a biosynthetic process involving Cirsium japonicum (Herba Cirsii, CJ) ethanol extract. The physicochemical properties of CJ-AuNPs were characterized using spectrometric and microscopic analyses. The in vitro stability of CJ-AuNPs was studied for 3 months. Moreover, the selective human gastric adenocarcinoma (AGS) cell killing ability of CJ-AuNPs was verified in cancer and normal cells. An in vitro study revealed that CJ-AuNPs trigger oxidative stress and iron-dependent ferroptosis in AGS cells. Mechanistically, CJ-AuNPs induced mitochondrial reactive oxygen species (ROS), Fe2+, and lipid peroxidation accumulation, and mitochondrial damage by destroying the glutathione peroxidase-4 (GPX4)-dependent antioxidant capacity. Furthermore, in a xenograft mouse model implanted with AGS cells, treatment with 2.5, 5, and 10 mg/kg CJ-AuNPs for 16 days reduced tumor xenograft growth in a dose dependent manner in vivo without systemic toxicity. These results demonstrate that CJ-AuNPs exert anticancer effects in vitro and in vivo by inducing ferroptosis-mediated cancer cell death. This study, based on green-synthesized nanodrug-induced ferroptosis, provides new insight into potential developments in cancer therapies.


Assuntos
Cirsium , Nanopartículas Metálicas , Neoplasias Gástricas , Humanos , Camundongos , Animais , Cirsium/química , Cirsium/metabolismo , Ouro/química , Ouro/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Antioxidantes/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Glutationa Peroxidase , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Etanol , Ferro
6.
J Nanobiotechnology ; 20(1): 441, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209164

RESUMO

BACKGROUND: Despite being a promising strategy, current chemotherapy for gastric cancer (GC) is limited due to adverse side effects and poor survival rates. Therefore, new drug-delivery platforms with good biocompatibility are needed. Recent studies have shown that nanoparticle-based drug delivery can be safe, eco-friendly, and nontoxic making them attractive candidates. Here, we develop a novel selenium-nanoparticle based drug-delivery agent for cancer treatment from plant extracts and selenium salts. RESULTS: Selenium cations were reduced to selenium nanoparticles using Kaempferia parviflora (black ginger) root extract and named KP-SeNP. Transmission electron microscopy, selected area electron diffraction, X-ray diffraction, energy dispersive X-ray, dynamic light scattering, and Fourier-transform infrared spectrum were utilized to confirm the physicochemical features of the nanoparticles. The KP-SeNPs showed significant cytotoxicity in human gastric adenocarcinoma cell (AGS cells) but not in normal cells. We determined that the intracellular signaling pathway mechanisms associated with the anticancer effects of KP-SeNPs involve the upregulation of intrinsic apoptotic signaling markers, such as B-cell lymphoma 2, Bcl-associated X protein, and caspase 3 in AGS cells. KP-SeNPs also caused autophagy of AGS by increasing the autophagic flux-marker protein, LC3B-II, whilst inhibiting autophagic cargo protein, p62. Additionally, phosphorylation of PI3K/Akt/mTOR pathway markers and downstream targets was decreased in KP-SeNP-treated AGS cells. AGS-cell xenograft model results further validated our in vitro findings, showing that KP-SeNPs are biologically safe and exert anticancer effects via autophagy and apoptosis. CONCLUSIONS: These results show that KP-SeNPs treatment of AGS cells induces apoptosis and autophagic cell death through the PI3K/Akt/mTOR pathway, suppressing GC progression. Thus, our research strongly suggests that KP-SeNPs could act as a novel potential therapeutic agent for GC.


Assuntos
Nanopartículas , Selênio , Neoplasias Gástricas , Zingiber officinale , Apoptose , Autofagia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Zingiber officinale/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Piruvatos , Sais/farmacologia , Sais/uso terapêutico , Selênio/farmacologia , Selênio/uso terapêutico , Transdução de Sinais , Neoplasias Gástricas/patologia , Serina-Treonina Quinases TOR/metabolismo
7.
Int J Biol Macromol ; 210: 196-207, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35513108

RESUMO

Silk fibroin (SF) and poly vinyl alcohol (PVA)-based nanomaterial has exceptional attention in regenerative medicine. However, the preparation of SF and PVA-based nanomaterials in the desired form is complex due to their poor mechanical strength, brittleness, and compatibility. To this end, Mo3Se3 is chosen as a bio-nanowire to fabricate by combining PVA and SF to improve the mechanical properties. Physicochemical and structural features of the Mo3Se3-PVA-SF nanowire hydrogel (Mo3Se3-PVA-SF-NWH) were characterized by field emission scanning electron microscope (FE-SEM). Mechanical properties, degradation ratio, hydrophilicity, water uptake capacity, biocompatibility, and biological activity of the hydrogel were also studied. Superior interactions were formed between the reinforcing molecules of Mo3Se3 and PVA/SF in the hydrogel network by introducing Mo3Se3 nanowire (NW) into the hydrogel. Conversely, Mo3Se3 NW imparts mechanical stability and robustness to the blends (hydrogel) with predictable long-term degradation characteristics. It was proven by in vitro biodegradable rate, and swelling behaviour was varied depending on the concentration of Mo3Se3 NW. Mo3Se3 reinforced the hydrogels and found high porosity with superior biocompatibility. Excellent cellular adaptation was analyzed by MTT assay, live/dead staining, western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). It revealed moderate toxicity at a concentration of 0.02% among the control samples. There was no discernible difference in 0.01% and 0.005% of Mo3Se3-PVA-SF-NWH in tenocytes derived from human bone marrow mesenchymal stem cells (hBMSC). Hence, this Mo3Se3-PVA-SF-NWH might be considered biocompatible due to its biological activities and appropriate mechanical properties. Overall, the Mo3Se3-PVA-SF-NWH might be considered a biocompatible scaffold for the possible biomedical applications of tendon tissue engineering.


Assuntos
Fibroínas , Nanofios , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células da Medula Óssea , Fibroínas/química , Humanos , Hidrogéis/química , Álcool de Polivinil/química , Tenócitos , Engenharia Tecidual , Alicerces Teciduais/química
8.
Mater Sci Eng C Mater Biol Appl ; 127: 112214, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34225866

RESUMO

In recent times, the development of functionalized nanoparticle methodology for biomedical applications has become a major challenge. In the present study, we prepared a novel gold nanoparticle (AuNP), named Curto-Cumin AuNP (CC-AuNP), using the biosynthetic process involving Nigella sativa (black cumin) seed extract and membrane vesicles isolated from the novel probiotic strain, Curtobacterium proimmune K3. Various spectrometric and microscopic analyses were performed to characterize the physicochemical properties of the nanoparticles. CC-AuNP exhibited significant cytotoxicity against human gastric adenocarcinoma (AGS) cells but not against normal cells. The toxic effects of the nanoparticles were associated with the excessive production of reactive oxygen species (ROS) in damaged mitochondria. Further, we investigated the molecular mechanisms underlying the cytotoxic effect of CC-AuNP. Results showed that except for B cell lymphoma 2 (Bcl-2), the intracellular apoptotic signaling molecules, such as p53, Bcl-associated X protein (Bax), and Caspase 9/Caspase 3 were significantly upregulated in AGS cells. ROS production and alterations in mitochondrial membrane potential were observed in AGS cells treated with CC-AuNP. The activation of autophagy flux-related biomarkers, such as LC3b/a, Beclin-1, p62, and Caspase 8, was confirmed by qPCR and western blotting. Autophagy pathway was suppressed in CC-AuNP-treated AGS cells and could not proceed further to the mature state. This was confirmed by the evaluation of both apoptosis and autophagy signaling pathways using autophagy-induced AGS cells treated with rapamycin, a well-studied autophagy activator. Overall, our results showed that CC-AuNP upregulates apoptotic signaling and suppresses the autophagy-related signaling pathway, and thus has potential as an anticancer agent. To our knowledge, the present study is the first to demonstrate that CC-AuNP may serve as novel therapeutic agent against gastric cancer. Furthermore, our study provides preliminary data which can be used to develop novel anticancer candidates and understand their anticancer mechanisms, and seems to be a good starting point for the development of alternative medications based on CC-AuNP.


Assuntos
Nanopartículas Metálicas , Nigella sativa , Apoptose , Autofagia , Linhagem Celular Tumoral , Ouro , Humanos , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA