Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 277(Pt 4): 134366, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39098702

RESUMO

Intact capsids of foot-and-mouth disease virus (FMDV) play a vital role in eliciting a protective immune response. Any change in the physico-chemical environment of the capsids results in dissociation and poor immunogenicity. Structural bioinfomatics studies have been carried out to predict the amino acids at the interpentameric region that resulted in the identification of mutant virus-like particles(VLPs) of FMDV serotype Asia1/IND/63/1972. The insect cell expressed VLPs were evaluated for their stability by sandwich ELISA. Among 10 mutants, S93H showed maximum retention of antigenicity at different temperatures, indicating its higher thermal stability as revealed by the in-silico analysis and retained the antigenic sites of the virus demonstrated by Sandwich ELISA. The concordant results of the liquid phase blocking ELISA for estimation of antibody titre of known sera with stable mutant VLP as antigen in place of virus antigen demonstrate its diagnostic potential. The stable mutant VLP elicited a robust immune response with 85.6 % protection in guinea pigs against virus challenge. The stabilized VLP based antigen requires minimum biosafety and cold storage for production and transit besides, complying with differentiation of infected from vaccinated animals. It can effectively replace the conventional virus handling during antigen production for prophylactic and diagnostic use.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Sorogrupo , Vírus da Febre Aftosa/imunologia , Vírus da Febre Aftosa/genética , Animais , Febre Aftosa/prevenção & controle , Febre Aftosa/diagnóstico , Febre Aftosa/imunologia , Cobaias , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Antígenos Virais/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Vacinas Virais/imunologia , Vacinas Virais/genética , Mutação
2.
Genomics ; 113(6): 4254-4266, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34757126

RESUMO

Foot-and-mouth disease virus (FMDV) causes a severe infection in ruminant animals. Here we present an in-depth transcriptional analysis of soft-palate tissue from cattle experimentally infected with FMDV. The differentially expressed genes from two Indian cattle (Bos indicus) breeds (Malnad Gidda and Hallikar) and Holstein Friesian (HF) crossbred calves, highlighted the activation of metabolic processes, mitochondrial functions and significant enrichment of innate antiviral immune response pathways in the indigenous calves. The results of RT-qPCR based validation of 12 genes was in alignment with the transcriptome data. The indigenous calves showing lesser virus load, elicited early neutralizing antibodies and IFN-γ immune responses. This study revealed that induction of potent innate antiviral response and cell mediated immunity in indigenous cattle, especially Malnad Gidda, significantly restricted FMDV replication during acute infection. These data highlighting the molecular processes associated with host-pathogen interactions, could aid in the conception of novel strategies to prevent and control FMDV infection in cattle.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Animais , Antivirais/metabolismo , Bovinos , Doenças dos Bovinos/genética , Febre Aftosa/genética , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Imunidade Celular , Imunidade Inata/genética , Carga Viral
3.
Appl Microbiol Biotechnol ; 104(6): 2589-2602, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32002597

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious, economically significant disease of cloven-hoofed animals caused by FMD virus (FMDV) of the Picornaviridae family. Vaccination of susceptible animals with inactivated virus vaccine is the standard practice for disease control. The prophylactic use of the inactivated vaccines has reduced the disease burden in many countries endemic to FMD. In the process of implementation of the mass vaccination program and disease eradication, it is essential to differentiate infected from vaccinated animals (DIVA) where a large proportion of the animal population is vaccinated, and disease-free zones are being established, to help in sero-surveillance of the disease. In such a scenario, the use of a negative marker vaccine is beneficial to rule out false-positive results in a disease-free zone. Here we report the construction and rescue of an infectious cDNA clone for FMDV serotype A Indian vaccine strain lacking 58 amino acid residues (87-144 amino acid position) in the carboxy-terminal region of the viral 3A protein. The recombinant deletion mutant virus showed similarity in the antigenic relationship with the parental strain. Immunization of guinea pigs with the inactivated vaccine formulated using the deletion mutant virus induced potent immune response with 100% protective efficacy upon challenge with homologous virus. Further, we show that sera from the guinea pigs infected with the deletion mutant virus did not show reactivity in an indirect ELISA test targeting the deleted portion of 3A protein. We conclude that the recombinant deletion mutant virus vaccine along with the newly developed companion indirect ELISA targeting portion of FMDV 3A protein could be useful in the implementation of a precise DIVA policy in our country when we reach FMD free status with vaccination.


Assuntos
Febre Aftosa/prevenção & controle , Imunogenicidade da Vacina , Deleção de Sequência , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/prevenção & controle , DNA Complementar , Febre Aftosa/imunologia , Vírus da Febre Aftosa/classificação , Cobaias , Mutação , Sorogrupo , Vacinas de Produtos Inativados/imunologia
4.
Virusdisease ; 30(3): 465-468, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31803815

RESUMO

Peste-des-petits ruminants is a transboundary viral disease of small ruminants caused by small ruminant morbillivirus (SRMV). In the present study, the full-length V gene of SRMV was constructed through site-directed mutagenesis from the P gene transcripts of the vaccine virus (Sungri/96 India) and expressed in a prokaryotic expression system. In animals, the seroconversion against this protein occurs from 14-days and is getting produced from 48 h in cell culture. An indirect ELISA developed using this protein has a relative sensitivity and relative specificity of 77.73% and 73.775%, respectively as compared to c-ELISA. In this ELISA, it was observed that most of the convalescent animals elicited higher level of antibodies than vaccinated animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA