Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 53(9): 1143-1153, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36840506

RESUMO

Sponges forms association with many bacteria that serve as sources of new bioactive compounds. The compounds are produced in response to environmental and nutritional conditions of the environment that enable them to protect their host from colonization. In this study, three sponge bacterial endophytes were isolated, identified, and subjected to solvent extraction processes. The identified bacteria are Bacillus amyloquifaciens, Bacillus paramycoides, and Enterobacter sp. The bacteria were cultured in two different fermentation media with varying nutritional composition for the extraction process. The extracts were evaluated for antibacterial and antibiofilm activity against microfouling bacteria and the chemical composition of each extract was analyzed via gas chromatography-mass spectrometry (GC-MS). The extract from the endophytes shows varying antibacterial and antibiofilm activity against the tested strains. Several compounds were detected from the extracts including some with known antibacterial/antibiofilm activity. The results showed variations in activity and secondary metabolite production between the extracts obtained under different nutritional composition of the media. In conclusion, this study indicated the role of nutrient composition in the activity and secondary metabolites production by bacteria associated with sponge Also, this study confirmed the role of sponge bacterial endophytes as producers of bioactive compounds with potential application as antifouling (AF) agents.


Assuntos
Antibacterianos , Endófitos , Endófitos/metabolismo , Antibacterianos/química , Enterobacter/metabolismo , Extratos Vegetais/química , Biofilmes , Testes de Sensibilidade Microbiana
2.
Environ Pollut ; 315: 120447, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36270566

RESUMO

The abundance of plastic debris (PDs) and its correlation with phthalic acid esters (PAEs), a class of pollutants associated with plastics, is not well understood, although PDs have been reported in relation to the release and distribution of aquatic pollutants such as PAEs. Few studies have linked the distribution of these pollutants in seawater. The current study examined the abundance and relationship of PDs and PAEs in seawater from Sharm Obhur and the Red Sea. Estimates were also made of their ecological impacts. Sharm Obhur is a semi-enclosed bay on the eastern shore of the Red Sea, near Jeddah, Saudi Arabia, and is heavily impacted by human activities. Contaminants from Sharm Obhur may be transported into the deep waters of the Red Sea by the subsurface outflow. The PAEs concentrations in the study area ranged from 0.8 to 1224 ng/L. Among the six PAEs studied, diethyl phthalate (DEP) (22-1124 ng/L), di-n-butyl phthalate (DBP) (9-346 ng/L) and di (2-ethylhexyl) phthalate (DEHP) (62-640 ng/L) were the predominant additives detected across all the sampling sits. Whereas the other PAEs, dimethyl phthalate (DMP) (5-76 ng/L), benzyl butyl phthalate (BBP) (4-25 ng/L) and di-n-octyl phthalate DnOp (0.5-80 ng/L) were generally lower in most samples. The sum of the six analyzed PAEs (∑6 PAEs) was lower at Sharm Obhur (587 ± 82 ng/L) and in the Red Sea shelf (677 ± 182 ng/L) compared to the Red Sea shelf break (1266 ± 354 ng/L). This suggests that degradation and adsorption of PAEs were higher in Sharm Obhur and on the shelf than on the shelf break. In contrast, there was no difference in the abundance of PDs between Sharm Obhur (0.04 ± 0.02 PDs/m3), Red Sea shelf (0.05 ± 0.02 PDs/m3) and in the Red Sea shelf break (0.03 ± 0.1 PDs/m3). Polyethylene (32%) and polypropylene (8%) were dominant, mostly smaller than 5 mm2 (78%), with the majority consisting of white (52%) and black (24%) fragments (39%), fibers (35%) and films (24%). A positive correlation between PAE concentration and abundance of PDs, suggests either a common source or a causal link through leaching. The ecological risk of ∑4PAEs (DMP, DEP, DBP and DEHP) ranged from (0.20-0.78), indicating a low to moderate risk for the Red Sea. The pollution index of PDs ranged from (0.14-0.36), showing that the Sharm Obhur and both sites of Red Sea suffered relatively low pollution.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Poluentes Químicos da Água , Humanos , China , Dibutilftalato/análise , Dietilexilftalato/análise , Ésteres/análise , Oceano Índico , Ácidos Ftálicos/análise , Plásticos , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 838(Pt 1): 155461, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35508245

RESUMO

In this study, the leaching of six phthalic acid esters (PAEs) from three common consumer plastics was investigated: low and high density polyethylene (LDPE, HDPE) and recycled polyethylene (RP). The effects of salinity, temperature, and ultraviolet irradiation (UVR) on leaching were investigated. The study of leaching of phthalates in aqueous environments in batch experiments is challenging due to their readsorption by the high hydrophobicity of PAEs, and there are no standard methods to study release processes. Here with the experiments, leaching (A) and spiking (B) using six PAEs to study the readsorption in the leaching process. PAEs were identified and quantified using GC-MS. Dibutyl phthalate (DBP) and benzyl butyl phthalate (DEHP) showed considerable leaching during the 5-day incubation: 14 ±â€¯1 to 128 ±â€¯14 and 25 ±â€¯2 to 79 ±â€¯5 ng/cm2, respectively, under UVR, corresponding approximately to (1.9-13%) and (12.4-22.4%) of the solvent extracted mass. The highest Kd values were measured for RP polymers (0.3-9.4), followed by LDPE (0.5-5.4) and HDPE (0.2-2.2) polymers. Thus, readsorption of PAEs at the surface removed 30-80% of the leached PAEs in the dissolved phase. For example in LDPE, the calculated total release of DBP was up to 54 ±â€¯4 ng/cm2, while the dissolved amount was 8.5 ±â€¯1 ng/cm2 during the 5-day incubation under freshwater conditions. Increasing salinity negatively affected the leaching rate, which decreased for DBP from 54 ±â€¯4 ng/cm2 in freshwater to 44 ±â€¯3 and 38 ±â€¯3 ng/cm2 at salinity of 20 and 40 g/L, respectively, from LDPE during the 5-day incubation. Temperature and UVR had a positive effect on the leaching rate, with the release of DBP from LDPE increasing from 44 ±â€¯3 ng/cm2 at room temperature (25 °C) to 60 ±â€¯6 and 128 ±â€¯14 ng/cm2 at high temperature (40 °C) and UVR, respectively. Overall, this study highlights the positive relationship between temperatures, UVR on the extent of leaching and surface adsorption on the leaching measurements.


Assuntos
Ésteres , Ácidos Ftálicos , Adsorção , Dibutilftalato , Polietileno , Salinidade , Água do Mar , Temperatura
4.
Sci Rep ; 7: 41965, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28155886

RESUMO

We examined time-dependent effect of iron oxide nanoparticles (IONPs) at a rate of 2000 mg kg-1 soil on Cynodon dactylon litter (3 g kg-1) decomposition in an arid sandy soil. Overall, heterotrophic cultivable bacterial and fungal colonies, and microbial biomass carbon were significantly decreased in litter-amended soil by the application of nanoparticles after 90 and 180 days of incubation. Time dependent effect of nanoparticles was significant for microbial biomass in litter-amended soil where nanoparticles decreased this variable from 27% after 90 days to 49% after 180 days. IONPs decreased CO2 emission by 28 and 30% from litter-amended soil after 90 and 180 days, respectively. These observations indicated that time-dependent effect was not significant on grass-litter carbon mineralization efficiency. Alternatively, nanoparticles application significantly reduced mineral nitrogen content in litter-amended soil in both time intervals. Therefore, nitrogen mineralization efficiency was decreased to 60% after 180 days compared to that after 90 days in nanoparticles grass-litter amended soil. These effects can be explained by the presence of labile Fe in microbial biomass after 180 days in nanoparticles amendment. Hence, our results suggest that toxicity of IONPs to soil functioning should consider before recommending their use in agro-ecosystems.


Assuntos
Cynodon/química , Nanopartículas Metálicas/efeitos adversos , Microbiologia do Solo , Solo/química , Biomassa , Ciclo do Carbono , Compostos Férricos/química , Nanopartículas Metálicas/química , Ciclo do Nitrogênio
5.
Environ Technol ; 38(19): 2381-2391, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27852158

RESUMO

Clean-up of contaminated wastewater remains to be a major challenge in petroleum refinery. Here, we describe the capacity of a bacterial consortium enriched from crude oil drilling site in Al-Khobar, Saudi Arabia, to utilize polycyclic aromatic hydrocarbons (PAHs) as sole carbon source at 60°C. The consortium reduced low molecular weight (LMW; naphthalene, phenanthrene, fluorene and anthracene) and high molecular weight (HMW; pyrene, benzo(e)pyrene and benzo(k)fluoranthene) PAH loads of up to 1.5 g/L with removal efficiencies of 90% and 80% within 10 days. PAH biodegradation was verified by the presence of PAH metabolites and evolution of carbon dioxide (90 ± 3%). Biodegradation led to a reduction of the surface tension to 34 ± 1 mN/m thus suggesting biosurfactant production by the consortium. Phylogenetic analysis of the consortium revealed the presence of the thermophilic PAH degrader Pseudomonas aeruginosa strain CEES1 (KU664514) and Bacillus thermosaudia (KU664515) strain CEES2. The consortium was further found to treat petroleum wastewater in continuous stirred tank reactor with 96 ± 2% chemical oxygen demand removal and complete PAH degradation in 24 days.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Petróleo , Bactérias , Peso Molecular , Filogenia , Hidrocarbonetos Policíclicos Aromáticos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA