Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(15): 23106-23119, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38413529

RESUMO

Mechanical recycling is an indispensable tool for plastic waste (PW) recycling and has the highest share in the PW recycling sector in India. The transition to the circular economy of plastics (CEoP) needs a systemic perspective on the mechanical recycling processes. Nevertheless, the assessment of multiple parameters influencing the mechanical recycling of PW is a complex decision-making problem for the development of triple-bottom-line mechanical recycling. A systemic perspective of various mechanical recycling scenarios was performed by employing a multi-criteria decision-making approach to examine the complexity of interlinked factors in the present investigation. Analytical hierarchy process (AHP) integrated with grey relational analysis (GRA) was used to evaluate the criteria that directly influence quality-oriented mechanical recycling. Data were collected by conducting semi-structured interviews using a framed questionnaire in stakeholder engagement with mechanical recyclers of PW. The first level hierarchy included economy, technical, resource consumption and environmental criteria. These criteria were further categorized into various significant indices such as quality of recyclate, recyclability, water and energy consumption during recycling. The results of the integrated grey relational analysis indicated that the technical parameters including quality of recyclate, resource efficiency, PW processing rate and recyclability have a significant influence on mechanical recycling. Based on AHP-GRA, scenario MR6, i.e. manufacturing of PET strap from recycled PET flakes, was ranked the optimal mechanical process amongst the various scenarios. MR6 was followed by Straps and Films at the second and third rank. The lowest ranking was observed for polymer blend recycling. These processes with higher ranks produced good quality recyclate with better efficiency and recyclability. Moreover, these processes consumed optimal resources during manufacturing. These processes also exhibited less maintenance cost, high production rate, low chemical consumption and waste generation as well as implemented pollution control practices.


Assuntos
Plásticos , Gerenciamento de Resíduos , Processo de Hierarquia Analítica , Reciclagem , Polímeros , Índia
2.
Environ Pollut ; 328: 121578, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028789

RESUMO

Petroleum refineries generate oily sludge that contains hazardous polycyclic aromatic hydrocarbons (PAH), and hence, its proper disposal is of foremost concern. Analysis of the physicochemical properties and functions of indigenous microbes of the contaminated sites are essential in deciding the strategy for bioremediation. This study analyses both parameters at two geographically distant sites, with different crude oil sources, and compares the metabolic capability of soil bacteria with reference to different contamination sources and the age of the contaminated site. The results indicate that organic carbon and total nitrogen derived from petroleum hydrocarbon negatively affect microbial diversity. Contamination levels vary widely on site, with levels of PAHs ranging from 5.04 to 1.66 × 103 µg kg-1 and 6.20 to 5.64 × 103 µg kg-1 in Assam and Gujarat sites respectively, covering a higher proportion of low molecular weight (LMW) PAHs (fluorene, phenanthrene, pyrene, and anthracene). Functional diversity values were observed to be positively correlated (p < 0.05) with acenaphthylene, fluorene, anthracene, and phenanthrene. Microbial diversity was the highest in fresh oily sludge which decreased upon storage, indicating that immediate bioremediation, soon after its generation, would be beneficial. Improvement in the bio-accessibility of hydrocarbon compounds by the treatment of biosurfactant produced by a (soil isolate/isolate) was demonstrated., with respect to substrate utilization.


Assuntos
Microbiota , Petróleo , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Petróleo/análise , Esgotos/microbiologia , Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Fenantrenos/metabolismo , Fluorenos/análise , Hidrocarbonetos/metabolismo , Antracenos/análise , Biodegradação Ambiental , Poluentes do Solo/análise , Microbiologia do Solo
3.
Bioresour Technol ; 369: 128399, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36503834

RESUMO

Activated carbon derived from peat-based biomass was sulfurized and magnetized forming magnetically-engineered sulfurized peat-based activated carbon (MEPBAC) and used for adsorption of caffeine (CFN) and sulfamethoxazole (SMX) from aqueous media. Modification increased the surface area (724 m2/g) and introduced sulphur-groups and Fe-based nano-structures in MEPBAC. Sulphur-groups enhanced adsorption efficiency, whereas Fe-based nano-structures facilitated easy magnetic separation of MEPBAC after intended use leading to high reusability with consistent removal efficiency (∼95 %). Response surface methodology was employed for design of experiments and process optimization. The results revealed that the maximum removal (SMX 94 %; CFN 97 %) could be achieved at an adsorbent dose of 1.4 and 1.6 g/L, respectively (pH 11, 311 K). Adsorption kinetics was best explained by a pseudo-second-order kinetic model. Adsorption data of SMX was fitted better to Langmuir (linear) and Freundlich (non-linear) isotherms, whereas that of CFN was fitted well with Freundlich (linear) and Langmuir (non-linear) isotherms (R2 ≥ 0.99).


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Termodinâmica , Carvão Vegetal/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Sulfametoxazol , Adsorção , Cinética , Preparações Farmacêuticas
4.
Environ Sci Pollut Res Int ; 30(12): 35269-35280, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36527551

RESUMO

Among several existing technologies, solar pasteurization is widely accepted as a reliable and cost-effective method for the removal of microbial pathogens from water. This work reports nanophotonics-triggered thermally enhanced solar water disinfection bottles (nano-SODIS) designed rationally by coating plasmonic carbon nanoparticles (CNP) on the outer surface for the targeted pathogen inactivation from water. The cost-effective CNP nanophotonic material used in this work has high efficiency in harvesting solar radiation and dissipating the heat locally. It has broad absorption efficiency to cover the entire solar spectrum; hence, it is capable to generate multiple scattering. It has also properties of boosting of photon absorption and focusing the light within a constrained spatial region, resulting in powerful and targeted heating that inactivates microorganisms in near proximity. These CNPs were used to coat the nano-SODIS water bottles that achieved the highest temperature of 65-70 °C within 90 min of exposure to solar radiation with a consequent six-log reduction. The disinfection period was reduced by a factor of 3 compared to the conventional solar disinfection system. The treated water was further assessed for 7 days, which confirmed the complete absence of bacteria and no sign of regeneration after storing for a longer period. The SODIS bottles coated with CNP thus overcome the problem of limited solar absorption by acquiring higher broadband absorption potential and thus achieving comparatively high disinfection efficiency. The broad band absorption of CNP was confirmed through UV-DRS absorption spectra. The nano-SODIS bottles designed and constructed in this work are simple, durable, and user friendly in nature and have been deployed in the rural and slums areas of Nagpur, Delhi, and Mumbai, India to provide pathogen-free potable water and to improve the health of local poor communities.


Assuntos
Energia Solar , Purificação da Água , Áreas de Pobreza , Desinfecção/métodos , Purificação da Água/métodos , Luz Solar , Microbiologia da Água
5.
Environ Res ; 212(Pt C): 113359, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35525288

RESUMO

Worldwide growing concerns about water contamination and pollution have increased significant interest in trace level sensing of variety of contaminants. Thus, there is demand for fabrication of low cost, miniaturized sensing device for in-situ detection of contaminants from the complex environmental matrices capable of providing selective and sensitive detection. Molecularly imprinted polymers (MIPs) has portrayed a substantial potential for selective recognition of various toxicants from a variety of environmental matrices, thus widely used as artificial recognition element in the electrochemical sensors (ECS) owing to their chemical stability, easy and low cost synthesis. The combination of nanomaterials modifiers with MIPs has endowed MIP-ECS with significantly improved sensing performance in the recent years, as the nanomaterial provide properties such as increased surface area, increased conductivity and electrocatalytic activity with enhanced electron transport phenomena, whereas MIPs provide selective recognition effect. In the present review, we have summarized the advances of MIP-ECS electrochemical sensors reported in last six years (2017-2022) for sensing of variety of contaminates including drugs, metal ions, hormones and emerging contaminates. Scope of computational modelling in design of sensitive and selective MIP-ECS is reviewed. We have focused particularly on the synthetic protocols for MIPs preparation including bulk, precipitation, electropolymerization, sol-gel and magnetic MIPs. Moreover, use of various nanomaterial as modifiers and sensitizers and their effects on the sensing performance of resulting MIP-ECS is described. Finally, the potential challenges and future prospects in the research area of MIP-ECS have been discussed.


Assuntos
Impressão Molecular , Nanoestruturas , Metais , Impressão Molecular/métodos , Polímeros/química
6.
Environ Sci Pollut Res Int ; 29(27): 40507-40519, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35349073

RESUMO

The major reason behind the spread of antibiotic resistance genes (ARGs) is persistent selective pressure in the environment encountered by bacteria. Genome plasticity plays a crucial role in dissemination of antibiotic resistance among bacterial pathogens. Mobile genetic elements harboring ARGs are reported to dodge bacterial immune system and mediate horizontal gene transfer (HGT) under selective pressure. Residual antibiotic pollutants develop selective pressures that force the bacteria to lose their defense mechanisms (CRISPR-cas) and acquire resistance. The present study targets the ESKAPE organisms (namely, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) causing various nosocomial infections and emerging multidrug-resistant species. The role of CRISPR-cas systems in inhibition of HGT in prokaryotes and its loss due to presence of various stressors in the environment is also focused in the study. IncF and IncH plasmids were identified in all strains of E. faecalis and K. pneumoniae, carrying Beta-lactam and fluoroquinolone resistance genes, whereas sal3, phiCTX, and SEN34 prophages harbored aminoglycoside resistance genes (aadA, aac). Various MGEs present in selected environmental niches that aid the bacterial genome plasticity and transfer of ARGs contributing to its spread are also identified.


Assuntos
Acinetobacter baumannii , Enterococcus faecium , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Resistência Microbiana a Medicamentos/genética , Enterococcus faecium/genética , Transferência Genética Horizontal , Klebsiella pneumoniae
7.
Environ Sci Pollut Res Int ; 28(42): 59551-59569, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34508320

RESUMO

Direct or indirect discharge of wastes containing organic pollutants have contributed to the environmental pollution globally. Decontamination of highly polluted natural resources such as water using an effective treatment is a great challenge for public health and environmental protection. Photodegradation of organic pollutants using efficient photocatalyst has attracted extensive interest due to their stability, effectiveness towards degradation efficiency, energy, and cost efficiency. Among various photocatalysts, layered double hydroxides (LDHs) and their derivatives have shown great potential towards photodegradation of organic pollutants. Herein, we review the mechanism, key factors, and performance of LDHs and their derivatives for the photodegradation of organic pollutants. LDH-based photocatalysts are classified into three different categories namely unmodified LDHs, modified LDHs, and calcined LDHs. Each LDH category is reviewed separately in terms of their photodegradation efficiency and kinetics of degradation. In addition, the effect of photocatalyst dose, pH, and initial concentration of pollutant as well as photocatalytic mechanisms are also summarized. Lastly, the stability and reusability of different photocatalysts are discussed. Challenges related to modeling the LDHs and its derivatives are addressed in order to improve their functional capacity.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Adsorção , Hidróxidos , Fotólise
8.
Environ Sci Pollut Res Int ; 28(17): 21347-21358, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33415639

RESUMO

Pharmaceuticals and personal care products (PPCPs) do not have standard regulations for discharge in the environment and are categorized as contaminants of emerging concern as they pose potential threats to ecology as well as humans even at low concentrations. Conventional treatment processes generally employed in the wastewater treatment plants are not adequately engineered for effective removal of PPCPs. Identifying cost-effective tertiary treatment is therefore, important for complete removal of PPCPs from wastewater prior to discharge or reuse. Present study demonstrates adsorption using granular-activated carbon (GAC) as a possible tertiary treatment for simultaneous removal of five PPCPs from aqueous media. Adsorbent was characterized in terms of morphology, surface area, surface charge distribution, and presence of functional groups. Performance of GAC was investigated for sorption of three hydrophilic (ciprofloxacin, acetaminophen, and caffeine) and two hydrophobic (benzophenone and irgasan) PPCPs from aqueous solution varying the process parameters (initial concentration, adsorbent dose, pH, agitation time). Langmuir isotherm model (correlation coefficients (R2): 0.993 to 0.998) appeared to fit the isotherm data better than Temkin isotherm model for these adsorbates. Adsorption efficiencies of these compounds (8.26 to 20.40 mg g-1) were in accordance with their log Kow values. While the adsorption kinetics was best explained in terms of a pseudo-second-order kinetic model, the data suggested that adsorption mechanism was mainly governed by the intraparticle diffusion. The role of physical factors like molecular volume, molecular size, and area of targeted PPCPs were investigated through computational studies which in turn can help predicting their uptake onto GAC.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Humanos , Cinética , Poluentes Químicos da Água/análise
9.
J Hazard Mater ; 408: 124877, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33383454

RESUMO

In India, sewage (partially-treated/ untreated) is randomly used for irrigation because of easy availability and presence of residual organics and nutrients. However, data on the occurrence of contaminants of emerging concerns (CECs) such as pharmaceuticals and personal care products (PPCPs) and antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in sewage is scarce in Indian perspective. Herein, for the first time, we present a quantitative contamination profiling of selected PPCPs and antibiotic resistance in untreated and biologically-treated sewage from three different sewage treatment plants, located in northern and central part of India. Profiling of PPCPs were done using LC-ESI-MS/MS whereas antibiotic resistance was analyzed using gradient PCR and qPCR techniques. PPCPs were detected both in untreated and treated samples (0.4 - 1340 µg/L). A reduction in ARB and ARG load (2-3 log) and an increase in ARG copy number with respect to beta lactams and tetracycline were observed in treated sewage. Triclosan, estrone and 17α-ethynylestradiol, ubiquitous in all samples, could be used as markers for performance monitoring of sewage treatment facilities. The results obtained in this study help evaluate health and ecological risks associated with the presence of CECs in treated sewage used for irrigation and frame future policies.


Assuntos
Esgotos , Espectrometria de Massas em Tandem , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Índia
10.
J Hazard Mater ; 369: 474-482, 2019 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-30798162

RESUMO

Rampant environmental pollution is the most ubiquitous concern of current world. A sustainable panacea to overarching contamination of water-borne pathogens demands cheap and eco-friendly oriented research. Solar energy is effortlessly accessible in most of the weather conditions and can be used for water decontamination. In this context, Solar Water Disinfection (SWADIS) appears to be feasible solution. Herein we are reporting newly developed Carbon nanoparticles (CNP) which shows absorption of light in broad region extending from Ultraviolet-Visible (UV) to Infrared Spectroscopy (IR). This CNP with pronounced photothermal effect has been used for SWADIS. Photothermal effect of plasmonic nanomaterials has massive potential and has exploited for disinfection of water. Moving towards practical device design we have developed an efficient CNP based Multipurpose Solar Pasteurizer (MSP) and Nano-Solar Pasteurizer (NSP) which can efficiently perform the SWADIS. Result shows that upon irradiation under natural solar radiation pasteurizers can thermally inactivate the bacteria. The system proves to be able to perform 100% bacterial inactivation in sunny days. We also conducted bacterial inactivation experiments by simulating 106 CFU mL-1 concentration of E. coli in water to mimic field conditions. Results are evident that pasteurizers achieved 100% bacterial inactivation within period of ˜45 min under sunlight.


Assuntos
Desinfecção/métodos , Energia Solar , Poluição Química da Água , Análise Custo-Benefício , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/efeitos da radiação , Cinética , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Temperatura , Microbiologia da Água
11.
J Mol Recognit ; 31(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28349611

RESUMO

Ion cum molecularly dual imprinted polymer (DMIP) was synthesized for the simultaneous removal of salicylic acid (SA) and cadmium (Cd) by suspension polymerization method using chitosan (CTS) as functional polymer, epichlorohydrin as cross-linker, and 4-hydroxy benzoic acid (4HBA) as well as Cd as organic and inorganic templates, respectively. Use of the dummy template 4HBA during the synthesis of DMIP had the advantage of creating imprinted cavities in DMIP, which depicted good uptake for SA. Scanning electron microscopy and Fourier transform infrared spectroscopy indicated successful preparation of DMIP. Particle size analysis confirmed polydispersity, and thermal and swelling studies indicated the mechanical stability in DMIP. The rebinding capacities of the DMIP for Cd and SA were found to be 38.46 and 23.81 mgg-1 , respectively, under the optimize condition of the time, dose, and concentration. Adsorption isotherm results fitted into Langmuir adsorption isotherm model with the R2 values of 0.994 and 0.995 for Cd and SA, respectively. The presence of intramolecular hydrogen bonding in SA, stability of the template-monomer complexes (CTS-SA and CTS-4HBA), and the involvement of the hydroxyl groups on DMIP for the uptake of SA has been supported by molecular modeling studies using Gaussian 03 software. The electron doublet of the amino groups of DMIP was involved for the uptake of Cd. Lower binding efficiency of DMIP for SA as compared to Cd may be due to the partial participation of hydroxyl group in cross-linking with epichlorohydrin during the synthesis of DMIP.


Assuntos
Cádmio/isolamento & purificação , Polímeros/química , Ácido Salicílico/isolamento & purificação , Adsorção , Cádmio/química , Cromatografia Líquida de Alta Pressão , Ligação de Hidrogênio , Microscopia Eletrônica de Varredura , Impressão Molecular , Polimerização , Polímeros/síntese química , Ácido Salicílico/química , Extração em Fase Sólida , Espectroscopia de Infravermelho com Transformada de Fourier
12.
J Hazard Mater ; 343: 157-165, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28950203

RESUMO

The present manuscript deals with the application of carbon nano particles (CNP) and chitosan (CHIT) in the form of CHIT-CNP composite for the disinfection of water. The CHIT-CNP composite was prepared by the solution casting method and characterized by TEM, XRD and elemental analysis. In the present investigation we study the disinfection efficiency towards E. coli bacteria of both CNP and CHIT-CNP, under sunlight (SODIS) in identical experimental conditions. Both CNP and CHIT-CNP enhanced disinfection as compared to SODIS alone, and comparable performance was achieved when the same dose of CNP in the two materials was applied. However, the CHIT-CNP composite is in the form of a fabric and it is easier to use and handle as compared to the CNP powder, especially in rural and resource-constrained areas. Moreover the SODIS-CHIT-CNP setup, when used in a compound parabolic collector (CPC) reactor showed high bactericidal efficiency compared to SODIS alone, which is promising for practical applications. The disinfection potential of the CNP powder was compared with that of the well-known material TiO2 Degussa P25 (DP25): DP25 gave 6-log kill of bacteria in 180min, whereas CNP produced 6-log kill in 150min.

13.
Environ Monit Assess ; 189(9): 446, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28799017

RESUMO

This paper reports the seasonal variation and environmental quality control data for five fingerprint pharmaceuticals and personal care products (PPCPs) (acetaminophen ciprofloxacin, caffeine, irgasan and benzophenone) in the influent and the effluent of the sewage treatment plant (STP) and surface water bodies (six major lakes) in and around Nagpur, one of the "A class city" in the central India over a period of 1 year. The target compounds were analysed using developed offline solid-phase extraction (SPE) coupled with reversed phase high-performance liquid chromatography (RP-HPLC-PDA) method. All the five PPCPs were found in the influent, whereas four were found in the effluent of the STP. However, in the surface water bodies, three PPCPs were detected in all the seasons. Above PPCPs were present in the concentration range of 1-174 µg L-1 in the surface water bodies, 12-373 µg L-1 in the influent and 11-233 µg L-1 in the effluent of the STP. Amongst the five PPCPs, caffeine was found to be in higher concentration as compared to others. The seasonal trends indicate higher concentrations of PPCPs in summer season and lowest in the rainy season. Additionally, physico-chemical characterisations (inorganic and organic parameters) of the collected samples were performed to access the anthropogenic pollution. Ecotoxicological risk assessment was done to appraise the degree of toxicity of the targeted compounds. Hazard quotient (HQ) values were found to be < 1 indicating no adverse effect on the targeted organism.


Assuntos
Cosméticos/análise , Monitoramento Ambiental , Lagos/química , Preparações Farmacêuticas/análise , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Benzofenonas , Carbanilidas , Cromatografia de Fase Reversa , Cidades , Ecotoxicologia , Índia , Medição de Risco , Estações do Ano , Esgotos/análise , Extração em Fase Sólida , Purificação da Água/métodos
14.
Environ Monit Assess ; 188(9): 512, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27502523

RESUMO

The present study reports a precise and simple offline solid-phase extraction (SPE) coupled with reversed-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous determination of five representative and commonly present pharmaceuticals and personal care products (PPCPs), a new class of emerging pollutants in the aquatic environment. The target list of analytes including ciprofloxacin, acetaminophen, caffeine benzophenone and irgasan were separated by a simple HPLC method. The column used was a reversed-phase C18 column, and the mobile phase was 1 % acetic acid and methanol (20:80 v/v) under isocratic conditions, at a flow rate of 1 mL min(-1). The analytes were separated and detected within 15 min using the photodiode array detector (PDA). The linearity of the calibration curves were obtained with correlation coefficients 0.98-0.99.The limit of detection (LOD), limit of quantification (LOQ), precision, accuracy and ruggedness demonstrated the reproducibility, specificity and sensitivity of the developed method. Prior to the analysis, the SPE was performed using a C18 cartridge to preconcentrate the targeted analytes from the environmental water samples. The developed method was applied to evaluate and fingerprint PPCPs in sewage collected from a residential engineering college campus, polluted water bodies such as Nag river and Pili river and the influent and effluent samples from a sewage treatment plant (STP) situated at Nagpur city, in the peak summer season. This method is useful for estimation of pollutants present in microquantities in the surface water bodies and treated sewage as compared to nanolevel pollutants detected by mass spectrometry (MS) detectors.


Assuntos
Rios/química , Esgotos/análise , Poluentes Químicos da Água/análise , Acetaminofen/análise , Benzofenonas/análise , Cafeína/análise , Carbanilidas/análise , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Ciprofloxacina/análise , Cidades , Cosméticos/análise , Monitoramento Ambiental , Índia , Limite de Detecção , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos
15.
Food Chem ; 146: 385-93, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24176358

RESUMO

This paper reports the preparation of gallic acid (GA) molecularly imprinted polymers (MIPs) by the precipitation polymerisation and highlights the effect of porogen on particle size and specific molecular recognition properties. MIP, M-100 prepared in the porogen acetonitrile and MIP, M-75 prepared in a mixture of acetonitrile-toluene (75:25 v/v), resulted in the formation of microspheres with approximately 4µm particle size and surface area of 96.73m(2)g(-1) and nanoparticles (0.8-1000nm) and a surface area of 345.9m(2)g(-1), respectively. The Langmuir-Freundlich isotherm study revealed that M-75 has comparatively higher number of binding sites which are homogenous and has higher affinity for GA. The MIPs selectively recognised GA in presence of its structural analogues. Pure GA with percent recovery of 75 (±1.6) and 83.4 (±2.2) was obtained from the aqueous extract of Emblica officinalis by M-100 and M-75, respectively and hot water at 60°C served as the eluting solvent.


Assuntos
Ácido Gálico/isolamento & purificação , Nanopartículas/química , Phyllanthus emblica/química , Extratos Vegetais/isolamento & purificação , Extração em Fase Sólida/instrumentação , Ácido Gálico/química , Microesferas , Impressão Molecular , Tamanho da Partícula , Extratos Vegetais/química , Polimerização , Polímeros/síntese química , Polímeros/química , Extração em Fase Sólida/métodos
16.
Artigo em Inglês | MEDLINE | ID: mdl-23978741

RESUMO

Gallic acid (GA) is known by its antioxidant, anticarcinogenic properties and scavenger activity against several types of harmful free radicals. Molecularly imprinted polymers (MIPs) are used in separation of a pure compound from complex matrices. A stable template-monomer complex generates the MIPs with the highest affinity and selectivity for the template. The quantum chemical computations based on density functional theory (DFT) was used on the template Gallic acid (GA), monomer acrylic acid (AA) and GA-AA complex to study the nature of interactions involved in the GA-AA complex. B3LYP/6-31+G(2d,2p) model chemistry was used to optimize their structures and frequency calculations. The effect of porogen acetonitrile (ACN) on complex formation was included by using polarizable continuum model (PCM). The results demonstrated the formation of a stable GA-AA complex through the intermolecular hydrogen bonding between carboxylic acid groups of GA and AA. The Mulliken atomic charge analysis and simulated vibrational spectra also supported the stable hydrogen bonding interaction between the carboxylic acid groups of GA and AA with minimal interference of porogen ACN. Further, simulations on GA-AA mole ratio revealed that 1:4 GA-AA was optimum for synthesis of MIP for GA.


Assuntos
Ácido Gálico/química , Impressão Molecular , Polímeros/química , Ligação de Hidrogênio , Modelos Moleculares , Polimerização , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier
17.
J Mol Model ; 18(11): 4797-810, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22699703

RESUMO

Gallic acid (GA) is important for pharmaceutical industries as an antioxidant. It also finds use in tanning, ink dyes and manufacturing of paper. Molecularly imprinted polymers (MIP), which are tailor made materials, can play an excellent role in separation of GA from complex matrices. Molecular recognition being the most important property of MIP, the present work proposes a methodology based on density functional theory (DFT) calculations for selection of suitable functional monomer for a rational design of MIP with a high binding capacity for GA. A virtual library of 18 functional monomers was created and screened for the template GA. The prepolymerization template-monomer complexes were optimized at B3LYP/6-31G(d) model chemistry and the changes in the Gibbs free energy (ΔG) due to complex formation were determined on the optimized structures. The monomer with the highest Gibbs free energy gain forms most stable complex with the template resulting in formation of more selective binding sites in the polymeric matrix in MIPs. This can lead to high binding capacity of MIP for GA. Amongst the 18 monomers, acrylic acid (AA) and acrylamide (AAm) gave the highest value of ΔG due to complex formation with GA. 4-vinyl pyridine (4-Vp) had intermediate value of ΔG while, methyl methacrylate (MMA) gave least value of ΔG due to complex formation with GA. Based on this study, the MIPs were synthesized and rebinding performance was evaluated using Langmuir-Freundlich model. The imprinting factor for AA and AAm based MIPs were 5.28 and 4.80 respectively, 4-Vp based MIP had imprinting factor of 2.59 while MMA based MIP exhibited an imprinting factor of 1.95. The experimental results were in good agreement with the computational predictions. The experimental data validated the DFT based computational approach.

18.
Bioresour Technol ; 97(7): 877-85, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-15978803

RESUMO

Studies were carried out to remove basic dyes such as safranine T, methylene blue, crystal violet, light green, brilliant milling violet and patent blue VS from their aqueous solutions using biodegradable polymeric absorbent material, viz., Jalshakti (JS). Results showed that 93% safranine T, 98% methylene blue and 84% crystal violet were adsorbed on JS relative to their initial concentration (10 mg L(-1)). The optimum pH was found to be 6.0+/-0.5 and smaller size of particle of JS resulted better adsorptive removal of the dyes. IR spectroscopic and potassium ion release studies revealed that basic dyes were selectively removed through adsorption-ion-exchange mechanism involving carboxylic groups and K+ ions of JS.


Assuntos
Corantes/química , Corantes/isolamento & purificação , Polímeros/química , Água/química , Adsorção , Carbono/química , Difusão , Estudos de Avaliação como Assunto , Violeta Genciana/química , Violeta Genciana/isolamento & purificação , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Cinética , Verde de Metila/química , Verde de Metila/isolamento & purificação , Azul de Metileno/química , Azul de Metileno/isolamento & purificação , Estrutura Molecular , Tamanho da Partícula , Fenazinas/química , Fenazinas/isolamento & purificação , Fotometria , Potenciometria , Soluções , Espectrofotometria Infravermelho , Purificação da Água
19.
Ann Chim ; 93(9-10): 739-44, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14672364

RESUMO

Two commercial reactive azo dyes--Reactive Black 5 (RB5) and Reactive Orange 16 (RO 16) have been treated by titanium dioxide and Zinc oxide photocatalysts separately under presence of sunlight. It is observed that solar photocatalytic treatment is effective in terms of colour and COD. The photodegradation efficiency of zinc oxide is comparable with TiO2 at pH 5-6 for RO16. The extent of decolourization and degradation of RB5 is greater in presence of zinc oxide photocatalyst than TiO2 at pH 5- 6. Zinc oxide undergoes <1% photodissolution after 6 hours of solar irradiation at working pH.


Assuntos
Compostos Azo/química , Naftalenossulfonatos/química , Purificação da Água/métodos , Catálise , Corantes , Oxirredução , Fotoquímica , Indústria Têxtil , Titânio/química , Óxido de Zinco/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-12940496

RESUMO

Studies on bench scale reactor were undertaken to determine its performance at various organic loading rate (OLR) and hydraulic retention time (HRT). The results indicated BOD and COD removals in the range of 67.2-77.4% and 57.8-69.1% respectively at the OLRs between 0.84 and 2.5 kgCOD/m3 d and HRT of 10 days. Daily gas production was measured by gas flow meter. Daily gas production varied between 0.268 and 0.326 m3/kgCOD added at the different OLRs. Studies were also carried out at lower HRT of 5 days. But BOD/COD removals reduced and correspondingly gas production also reduced. Gas composition remained constant at both the HRT and the Methane content was around 65-68% while the CO2 was around 32-35%. This paper discusses in detail the feasibility of upflow anaerobic fixed film fixed bed (UAFFFB) reactor system in treating the strong spent broth from the antibiotic industry.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Reatores Biológicos , Indústria Farmacêutica , Purificação da Água/métodos , Bactérias Anaeróbias/fisiologia , Biofilmes , Metano/análise , Oxigênio/química , Oxigênio/metabolismo , Eliminação de Resíduos Líquidos , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA