Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 410: 96-105, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30218682

RESUMO

Organophosphorus nerve agents still represent a serious risk to human health. In the French armed forces, the current emergency treatment against OP intoxications is a fully licensed wet-dry dual-chambered autoinjector (Ineurope ®), that contains pralidoxime methylsulfate (2-PAM) to reactivate inhibited acetylcholinesterase (AChE), atropine sulfate (AS) and avizafone chlorhydrate (AVZ). While this treatment is effective against several of the known nerve agents, it shows little efficacy against the Russian VX (VR), one of the most toxic compounds. HI-6 dimethanesulfonate (HI-6 DMS) is an oxime able to reactivate in vitro and in vivo VR-inhibited AChE. To confirm the superiority of HI-6 DMS towards 2-PAM prior to licensing, we compared the two 3-drug-combinations (HI-6 vs 2-PAM, 33 and 18 mg/kg respectively, equimolar doses; AS/AVZ 0.25/0.175 mg/kg respectively) in VR-poisoned cynomolgus macaques, the model required by the French drug regulatory agency. In parallel we performed HI-6 pharmacokinetics analysis using a one compartment model. A better efficacy of the HI-6 DMS combination was clearly observed: up to 5 LD50 of VR (i.m.), a single administration of the HI-6 DMS combination, shortly after the onset of clinical signs, prevented death of the four intoxicated animals. Conversely 2-PAM only prevented death in one out of three subjects exposed to the same amount of VR. As expected with V agents, reinhibition of blood AChE was observed but without any apparent impact on the clinical recovery of the animals. A single administration of the HI-6 DMS combination was still but partially effective at 15 LD50 of VR, allowing a 50% survival rate.


Assuntos
Inibidores da Colinesterase/intoxicação , Reativadores da Colinesterase/uso terapêutico , Agentes Neurotóxicos/intoxicação , Compostos Organotiofosforados/intoxicação , Compostos de Pralidoxima/uso terapêutico , Animais , Gasometria , Temperatura Corporal/efeitos dos fármacos , Reativadores da Colinesterase/farmacocinética , Colinesterases/sangue , Frequência Cardíaca/efeitos dos fármacos , Dose Letal Mediana , Macaca fascicularis , Masculino , Atividade Motora/efeitos dos fármacos , Midríase/induzido quimicamente , Midríase/patologia , Oximas/farmacocinética , Oximas/uso terapêutico , Compostos de Pralidoxima/farmacocinética , Compostos de Piridínio/farmacocinética , Compostos de Piridínio/uso terapêutico , Taxa de Sobrevida
2.
CNS Neurosci Ther ; 19(6): 411-27, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23601960

RESUMO

Status epilepticus (SE), a neurological emergency both in adults and in children, could lead to brain damage and even death if untreated. Generalized convulsive SE (GCSE) is the most common and severe form, an example of which is that induced by organophosphorus nerve agents. First- and second-line pharmacotherapies are relatively consensual, but if seizures are still not controlled, there is currently no definitive data to guide the optimal choice of therapy. The medical community seems largely reluctant to use ketamine, a noncompetitive antagonist of the N-methyl-d-aspartate glutamate receptor. However, a review of the literature clearly shows that ketamine possesses, in preclinical studies, antiepileptic properties and provides neuroprotection. Clinical evidences are scarcer and more difficult to analyze, owing to a use in situations of polytherapy. In absence of existing or planned randomized clinical trials, the medical community should make up its mind from well-conducted preclinical studies performed on appropriate models. Although potentially active, ketamine has no real place for the treatment of isolated seizures, better accepted drugs being used. Its best usage should be during GCSE, but not waiting for SE to become totally refractory. Concerns about possible developmental neurotoxicity might limit its pediatric use for refractory SE.


Assuntos
Analgésicos/uso terapêutico , Ketamina/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Animais , Humanos , Venenos/toxicidade , Receptores de N-Metil-D-Aspartato/metabolismo , Estado Epiléptico/etiologia
3.
Chem Biol Interact ; 203(1): 154-9, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23044489

RESUMO

Organophosphorus nerve agents (NA), potent irreversible cholinesterase inhibitors, could induce severe seizures, status epilepticus (SE), seizure-related brain damage (SRBD) and lethality. Despite the lack of data in the case of NA, clinical evidences suggest that SE survivors could suffer from neurological/cognitive deficits and impairments such as spontaneous recurrent seizures (epilepsy) after a latent period of epileptogenesis. It is beyond doubt that an effective and quick management of the initial seizures and prevention of SRBD are critical to prevent these long-term consequences, explaining why most experimental data are focusing on the 5-40min post-exposure time frame. However, in field conditions, treatment may be delayed and with the exception of NMDA receptor antagonists, currently no drug provides protection (against lethality, seizures, SRBD and neurological consequences) when seizures are left unabated for one hour or more. Ketamine (KET) is the only NMDA antagonist licensed as an injectable drug in different countries and remains an anesthetic of choice in some difficult field conditions. In this short review paper, after a presentation of some of the key points of the pathophysiology of NA-induced SE and a quick survey of the potential therapeutic avenues in the context of delayed treatment of NA-induced SE, we will review the recent data we obtained showing that KET, in combination with atropine sulfate (AS), with or without a benzodiazepine, considerably reduces soman-induced neuroinflammation, provides neuroprotection, histologically and functionally, and also positively modify soman-induced changes in brain metabolism. Finally, we will also mention some results from safety studies including those bringing evidence that, at difference with MK-801, KET does not impair thermoregulation and even seems to reduce AS-induced heat stress. All in all, KET, in combination, appears a good candidate for the out-of-hospital treatment of severe NA-induced SE.


Assuntos
Substâncias para a Guerra Química/toxicidade , Ketamina/administração & dosagem , Soman/toxicidade , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Inibidores da Colinesterase/toxicidade , Maleato de Dizocilpina/administração & dosagem , Cobaias , Humanos , Fármacos Neuroprotetores/administração & dosagem , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Estado Epiléptico/fisiopatologia , Fatores de Tempo
4.
Toxicol Appl Pharmacol ; 259(2): 195-209, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22245128

RESUMO

Epileptic seizures and status epilepticus (SE) induced by the poisoning with organophosphorus nerve agents (OP), like soman, are accompanied by neuroinflammation whose role in seizure-related brain damage (SRBD) is not clear. Antagonists of the NMDA glutamate ionotropic receptors are currently among the few compounds able to arrest seizures and provide neuroprotection even during refractory status epilepticus (RSE). Racemic ketamine (KET), in combination with atropine sulfate (AS), was previously shown to counteract seizures and SRBD in soman-poisoned guinea-pigs. In a mouse model of severe soman-induced SE, we assessed the potentials of KET/AS combinations as a treatment for SE/RSE-induced SRBD and neuroinflammation. When starting 30min after soman challenge, a protocol involving six injections of a sub-anesthetic dose of KET (25mg/kg) was evaluated on body weight loss, brain damage, and neuroinflammation whereas during RSE, anesthetic protocols were considered (KET 100mg/kg). After confirming that during RSE, KET injection was to be repeated despite some iatrogenic deaths, we used these proof-of-concept protocols to study the changes in mRNA and related protein contents of some inflammatory cytokines, chemokines and adhesion molecules in cortex and hippocampus 48h post-challenge. In both cases, the KET/AS combinations showed important neuroprotective effects, suppressed neutrophil granulocyte infiltration and partially suppressed glial activation. KET/AS could also reduce the increase in mRNA and related pro-inflammatory proteins provoked by the poisoning. In conclusion, the present study confirms that KET/AS treatment has a strong potential for SE/RSE management following OP poisoning. The mechanisms involved in the reduction of central neuroinflammation remain to be studied.


Assuntos
Atropina/farmacologia , Substâncias para a Guerra Química/toxicidade , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Antagonistas Muscarínicos/farmacologia , Soman/toxicidade , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Animais , Área Sob a Curva , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Quimiocina CXCL1/genética , Quimiocina CXCL1/imunologia , Masculino , Camundongos , Neuroglia/imunologia , Neutrófilos/imunologia , Reação em Cadeia da Polimerase , RNA Mensageiro/química , RNA Mensageiro/genética , Distribuição Aleatória , Estado Epiléptico/imunologia
5.
Epilepsia ; 52(12): 2315-25, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21955106

RESUMO

PURPOSE: Neuroinflammation appears as a prominent feature of the mesiotemporal lobe epilepsy syndrome (MTLE) that is observed in human patients and animal models. However, the precise temporal relationship of its development during epileptogenesis remains to be determined. The aim of the present study was to investigate (1) the time course and spatial distribution of neuronal death associated with seizure development, (2) the time course of microglia and astrocyte activation, and (3) the kinetics of induction of mRNAs from neuroinflammatory-related proteins during the emergence of recurrent seizures. METHODS: Experimental MTLE was induced by the unilateral intrahippocampal injection of kainate in C57BL/6 adult mice. Microglial and astrocytic changes in both ipsilateral and contralateral hippocampi were examined by respectively analyzing griffonia simplicifolia (GSA) lectin staining and glial fibrillary acidic protein (GFAP) immunoreactivity. Changes in mRNA levels of selected genes of cytokine and cytokine regulatory proteins (interleukin-1ß, IL-1ß; interleukin-1 receptor antagonist, IL-1Ra; suppressor of cytokine signaling 3, SOCS3) and enzymes of the eicosanoid pathway (group IVA cytosolic phospholipase A2, cPLA(2)-α; cycloxygenase-2, COX-2) were studied by reverse transcription-quantitative real time polymerase chain reaction. KEY FINDINGS: Our data show an immediate cell death occurring in the kainate-injected hippocampus during the initial status epilepticus (SE). A rapid increase of activated lectin-positive cells and GFAP-immunoreactivity was subsequently detected in the ipsilateral hippocampus. In the same structure, Il-1ß, IL-1Ra, and COX-2 mRNA were specifically increased during SE and epileptogenesis with a different time course. Conversely, the expression of SOCS3 mRNA, a surrogate marker of interleukin signaling, was mainly increased in the contralateral hippocampus after SE. SIGNIFICANCE: Our data show that specific neuroinflammatory pathways are activated in a time- and structure-dependent manner with putative distinct roles in epileptogenesis.


Assuntos
Citocinas/metabolismo , Epilepsia do Lobo Temporal/complicações , Regulação da Expressão Gênica/fisiologia , Inflamação/etiologia , Convulsões/etiologia , Animais , Morte Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Modelos Animais de Doenças , Eicosanoides/genética , Eicosanoides/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação/metabolismo , Ácido Caínico/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Lectinas de Plantas , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Tempo
7.
Toxicology ; 238(2-3): 166-76, 2007 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-17662515

RESUMO

Following exposure to the organophosphorus nerve agent soman, the development of long-lasting seizures and build-up of irreversible seizure-related brain damage (SRBD) still represent a therapeutic challenge. A neuro-inflammatory reaction takes place in the brain after poisoning but its characteristics and potential role in SRBD and post-status epilepticus epileptogenesis is not well understood. In the present study we have analyzed by quantitative RT-PCR the time course of changes in mRNA levels of IL-1beta, TNFalpha, IL-6, ICAM-1 and SOCS3 in hippocampus, whole cortex and cerebellum in a mouse model of severe seizures and neuropathy up to 7 days after poisoning. Mice received an injection of the oxime HI-6 (50mg/kg) 5 min prior to the administration of a convulsive dose of soman (172 microg/kg). An important and highly significant increase of the five mRNA levels was recorded in cortex and hippocampus. In the cortex, the activation was generally detected as early as 1h post-intoxication with a peak response recorded between 6 and 24h. In the hippocampus, the gene up-regulation was delayed to 6h post-soman and the peak response observed between 24 and 48 h. After peaking, the response declined (except for ICAM in the hippocampus) but remained elevated, some of them significantly, at day 7. Interestingly, in the cerebellum, some changes were also observed but were several fold smaller. In conclusion, the present study indicates a quick neuro-inflammatory gene response that does not subside over 7 days suggesting a potential role in the neurological consequences of soman-induced status epilepticus.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Convulsões/complicações , Soman/toxicidade , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Substâncias para a Guerra Química/toxicidade , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inflamação/etiologia , Molécula 1 de Adesão Intercelular/genética , Interleucina-1beta/genética , Masculino , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Convulsões/induzido quimicamente , Soman/administração & dosagem , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Fatores de Tempo , Fatores de Necrose Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA