Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(4): 1300-1318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38221803

RESUMO

Plants synthesize abundant terpenes through glandular trichomes (GTs), thereby protecting themselves from environmental stresses and increasing the economic value in some medicinal plants. However, the potential mechanisms for simultaneously regulating terpenes synthesis and GTs development remain unclear. Here, we showed that terpenes in Conyza blinii could be synthesized through capitate GTs. By treating with appropriate intensity of UV-B, the density of capitate GTs and diterpene content can be increased. Through analyzing corresponding transcriptome, we identified a MYB transcription factor CbMYB108 as a positive regulator of both diterpene synthesis and capitate GT density. Transiently overexpressing/silencing CbMYB108 on C. blinii leaves could increase diterpene synthesis and capitate GT density. Further verification showed that CbMYB108 upregulated CbDXS and CbGGPPS expression in diterpene synthesis pathway. Moreover, CbMYB108 could also upregulated the expression of CbTTG1, key WD40 protein confirmed in this study to promote GT development, rather than through interaction between CbMYB108 and CbTTG1 proteins. Thus, results showed that the UV-B-induced CbMYB108 owned dual-function of simultaneously improving diterpene synthesis and GT development. Our research lays a theoretical foundation for cultivating C. blinii with high terpene content, and broadens the understanding of the integrated mechanism on terpene synthesis and GT development in plants.


Assuntos
Conyza , Diterpenos , Conyza/metabolismo , Tricomas/metabolismo , Terpenos/metabolismo , Diterpenos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Plants (Basel) ; 12(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687397

RESUMO

As a vegetable with high nutritional value, broccoli (Brassica oleracea var. italica) is rich in vitamins, antioxidants and anti-cancer compounds. Glucosinolates (GLs) are one of the important functional components widely found in cruciferous vegetables, and their hydrolysate sulforaphane (SFN) plays a key function in the anti-cancer process. Herein, we revealed that blue light significantly induced the SFN content in broccoli sprouts, and salicylic acid (SA) was involved in this process. We investigated the molecular mechanisms of SFN accumulation with blue light treatment in broccoli sprouts and the relationship between SFN and SA. The results showed that the SFN accumulation in broccoli sprouts was significantly increased under blue light illumination, and the expression of SFN synthesis-related genes was particularly up-regulated by SA under blue light. Moreover, blue light considerably decreased the SA content compared with white light, and this decrease was more suppressed by paclobutrazol (Pac, an inhibitor of SA synthesis). In addition, the transcript level of SFN synthesis-related genes and the activity of myrosinase (MYR) paralleled the trend of SFN accumulation under blue light treatment. Overall, we concluded that SA participates in the SFN accumulation in broccoli sprouts under blue light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA