Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35957018

RESUMO

Herein, we describe pH and magnetism dual-responsive liquid paraffin-in-water Pickering emulsion stabilized by dynamic covalent Fe3O4 (DC-Fe3O4) nanoparticles. On one hand, the Pickerinfigureg emulsions are sensitive to pH variations, and efficient demulsification can be achieved by regulating the pH between 10 and 2 within 30 min. The dynamic imine bond in DC-Fe3O4 can be reversibly formed and decomposed, resulting in a pH-controlled amphiphilicity. The Pickering emulsion can be reversibly switched between stable and unstable states by pH at least three times. On the other hand, the magnetic Fe3O4 core of DC-Fe3O4 allowed rapid separation of the oil droplets from Pickering emulsions under an external magnetic field within 40 s, which was a good extraction system for purifying the aqueous solution contaminated by rhodamine B. The dual responsiveness enables Pickering emulsions to have better control of their stability and to be applied more broadly.

2.
Nanomaterials (Basel) ; 11(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070322

RESUMO

Developing solid-free nanoemulsions with pH responsiveness is desirable in enhanced oil recovery (EOR) applications. Here, we report the synthesis of an interfacial activity controllable surfactant (T-DBA) through dynamic imine bonding between taurine (T) and p-decyloxybenzaldehyde (DBA). Instead of macroemulsions, nanoemulsions can be prepared by using T-DBA as an emulsifier. The dynamic imine bond of T-DBA enables switching between the active and inactive states in response to pH. This switching of interfacial activity was used to gate the stability of nanoemulsions, thus enabling us to turn the nanoemulsions off and on. Using such dynamic imine bonds to govern nanoemulsion stability could enable intelligent control of many processes such as heavy oil recovery and interfacial reactions.

3.
Langmuir ; 37(22): 6632-6640, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34042453

RESUMO

Acid-responsive nonaqueous (glycerol in n-decane) Pickering emulsions were prepared using preferentially oil-wetted dynamic covalent silica (SiO2-pDB) nanoparticles as the Pickering emulsifiers. The acid-responsive Pickering emulsifier SiO2-pDB was prepared based on a Schiff base reaction between amino silica (SiO2-NH2) and p-decanoxybenzaldehyde (pDBA). The formation of SiO2-pDB was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analysis. The preferentially oil-wetted character of SiO2-pDB was indicated by contact angle measurement. Stable nonaqueous Pickering emulsions were prepared using preferentially oil-wetted SiO2-pDB as the Pickering emulsifier. However, after adjusting the nonaqueous Pickering emulsions to an acidic environment, complete phase separation occurred. In the acidic environment, preferentially oil-wetted SiO2-pDB decomposed into hydrophilic SiO2-NH2 and hydrophobic pDBA due to the decomposition of the dynamic imine bond in the SiO2-pDB. Then, the hydrophilic SiO2-NH2 and hydrophobic pDBA desorbed from the two-phase interface, resulting in complete phase separation of the initially stable nonaqueous Pickering emulsions. The acid-responsive nonaqueous Pickering emulsions show great potential in application in water sensitive systems, such as oil-based drilling fluids.

4.
J Colloid Interface Sci ; 588: 501-509, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33434877

RESUMO

HYPOTHESIS: The viscosity of water-in-oil Pickering emulsions may dramatically increase upon cooling. The solvation of the long-chain alkyl groups grafted on the particles stabilizer is the likely cause of the strong dependence of rheological property on temperature. Thus, we hypothesize that silica nanoparticles (NPs) grafted with short-chain alkyl groups can stabilize Pickering emulsions, yielding weakly temperature-dependent rheological property. EXPERIMENTS: Using alkyl-grafted (methyl, octyl, and octadecyl) silica NPs as emulsifiers, the rheological properties and microstructure of the water-in-oil Pickering, as well as the solvation of the silica NPs, were studied using diffusing-wave spectroscopy microrheology measurements, confocal laser scanning microscopy, and low-field nuclear magnetic resonance measurements. FINDINGS: The use of methyl- and octadecyl-grafted silica NPs, which have almost identical optimum contact angles, to stabilize emulsions dramatically reduced the effect of cooling on the viscosity. Moreover, the emulsions stabilized by these methyl-grafted silica NPs exhibited nearly constant rheological properties as the temperature decreased from 75 to 5 °C. The nearly constant rheological properties are attributed to the nearly constant solvation in this temperature range. These materials have potential applications in the cosmetics and petroleum industries.

5.
Langmuir ; 35(42): 13663-13670, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31549513

RESUMO

Cellulose nanocrystals (CNCs) with excellent biodegradability are promising biomaterials for use as responsive Pickering emulsifiers. However, the high hydrophilicity of CNCs limits their emulsification ability. Some existing studies have utilized complicated covalent modification procedures to increase the hydrophobicity of CNCs. To simplify the modification process, we prepared hydrophobically modified CNCs (CNCs-M2005) via simple and controllable electrostatic interactions with thermosensitive M2005. The obtained CNCs-M2005 exhibited temperature and CO2 dual-responsive properties. Subsequently, stable oil/water Pickering emulsions were prepared using the partially hydrophobic CNCs-M2005 at 20 °C. However, demulsification occurred when the temperature increased to 60 °C. This temperature-induced demulsification resulted from the dehydration of polyethylene oxide and polypropylene oxide, causing the aggregation of the CNCs-M2005, as shown by dynamic light scattering and transmission electron microscopy experiments. In addition, demulsification was also achieved after bubbling CO2, which was attributed to the dissociation of the partially hydrophobic CNCs-M2005. The temperature and CO2 dual-responsive biosafe Pickering emulsions open up opportunity for the design of intelligent food, cosmetic, and drug delivery systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA