Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(5): 329, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740757

RESUMO

Iron is crucial for cell DNA synthesis and repair, but an excess of free iron can lead to oxidative stress and subsequent cell death. Although several studies suggest that cancer cells display characteristics of 'Iron addiction', an ongoing debate surrounds the question of whether iron can influence the malignant properties of ovarian cancer. In the current study, we initially found iron levels increase during spheroid formation. Furthermore, iron supplementation can promote cancer cell survival, cancer spheroid growth, and migration; vice versa, iron chelators inhibit this process. Notably, iron reduces the sensitivity of ovarian cancer cells to platinum as well. Mechanistically, iron downregulates DNA homologous recombination (HR) inhibitor polymerase theta (POLQ) and relieves its antagonism against the HR repair enzyme RAD51, thereby promoting DNA damage repair to resist chemotherapy-induced damage. Additionally, iron tightly regulated by ferritin (FTH1/FTL) which is indispensable for iron-triggered DNA repair. Finally, we discovered that iron chelators combined with platinum exhibit a synergistic inhibitory effect on ovarian cancer in vitro and in vivo. Our findings affirm the pro-cancer role of iron in ovarian cancer and reveal that iron advances platinum resistance by promoting DNA damage repair through FTH1/FTL/POLQ/RAD51 pathway. Our findings highlight the significance of iron depletion therapy, revealing a promising avenue for advancing ovarian cancer treatment.


Assuntos
Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Ferro , Neoplasias Ovarianas , Rad51 Recombinase , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ferritinas/efeitos dos fármacos , Ferritinas/metabolismo , Ferro/metabolismo , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Oxirredutases/metabolismo , Platina/farmacologia , Platina/uso terapêutico , Rad51 Recombinase/metabolismo , DNA Polimerase teta/efeitos dos fármacos , DNA Polimerase teta/metabolismo , Apoferritinas/efeitos dos fármacos , Apoferritinas/metabolismo
2.
Cell Death Dis ; 15(3): 181, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429265

RESUMO

Emerging evidence highlights the multifaceted contributions of m6A modifications to glioma. IGF2BP3, a m6A modification reader protein, plays a crucial role in post-transcriptional gene regulation. Though several studies have identified IGF2BP3 as a poor prognostic marker in glioma, the underlying mechanism remains unclear. In this study, we demonstrated that IGF2BP3 knockdown is detrimental to cell growth and survival in glioma cells. Notably, we discovered that IGF2BP3 regulated ferroptosis by modulating the protein expression level of GPX4 through direct binding to a specific motif on GPX4 mRNA. Strikingly, the m6A modification at this motif was found to be critical for GPX4 mRNA stability and translation. Furthermore, IGF2BP3 knockdown glioma cells were incapable of forming tumors in a mouse xenograft model and were more susceptible to phagocytosis by microglia. Our findings shed light on an unrecognized regulatory function of IGF2BP3 in ferroptosis. The identification of a critical m6A site within the GPX4 transcript elucidates the significance of post-transcriptional control in ferroptosis.


Assuntos
Adenina , Adenosina , Ferroptose , Glioma , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Adenina/análogos & derivados , Adenosina/análogos & derivados , Modelos Animais de Doenças , Ferroptose/genética , Glioma/genética , Proteínas de Ligação a RNA/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA