Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 14(2): 214-226, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38197599

RESUMO

Chromosome-containing micronuclei are a feature of human cancer. Micronuclei arise from chromosome mis-segregation and characterize tumors with elevated rates of chromosomal instability. Although their association with cancer has been long recognized, only recently have we broadened our understanding of the mechanisms that govern micronuclei formation and their role in tumor progression. In this review, we provide a brief historical account of micronuclei, depict the mechanisms underpinning their creation, and illuminate their capacity to propel tumor evolution through genetic, epigenetic, and transcriptional transformations. We also posit the prospect of leveraging micronuclei as biomarkers and therapeutic targets in chromosomally unstable cancers. SIGNIFICANCE: Micronuclei in chromosomally unstable cancer cells serve as pivotal catalysts for cancer progression, instigating transformative genomic, epigenetic, and transcriptional alterations. This comprehensive review not only synthesizes our present comprehension but also outlines a framework for translating this knowledge into pioneering biomarkers and therapeutics, thereby illuminating novel paths for personalized cancer management.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Instabilidade Cromossômica , Segregação de Cromossomos , Biomarcadores
2.
Nature ; 619(7968): 176-183, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37286593

RESUMO

Chromosomal instability (CIN) and epigenetic alterations are characteristics of advanced and metastatic cancers1-4, but whether they are mechanistically linked is unknown. Here we show that missegregation of mitotic chromosomes, their sequestration in micronuclei5,6 and subsequent rupture of the micronuclear envelope7 profoundly disrupt normal histone post-translational modifications (PTMs), a phenomenon conserved across humans and mice, as well as in cancer and non-transformed cells. Some of the changes in histone PTMs occur because of the rupture of the micronuclear envelope, whereas others are inherited from mitotic abnormalities before the micronucleus is formed. Using orthogonal approaches, we demonstrate that micronuclei exhibit extensive differences in chromatin accessibility, with a strong positional bias between promoters and distal or intergenic regions, in line with observed redistributions of histone PTMs. Inducing CIN causes widespread epigenetic dysregulation, and chromosomes that transit in micronuclei experience heritable abnormalities in their accessibility long after they have been reincorporated into the primary nucleus. Thus, as well as altering genomic copy number, CIN promotes epigenetic reprogramming and heterogeneity in cancer.


Assuntos
Instabilidade Cromossômica , Segregação de Cromossomos , Cromossomos , Epigênese Genética , Micronúcleos com Defeito Cromossômico , Neoplasias , Animais , Humanos , Camundongos , Cromatina/genética , Instabilidade Cromossômica/genética , Cromossomos/genética , Cromossomos/metabolismo , Histonas/química , Histonas/metabolismo , Neoplasias/genética , Neoplasias/patologia , Mitose , Variações do Número de Cópias de DNA , Processamento de Proteína Pós-Traducional
3.
J Exp Med ; 220(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36534085

RESUMO

Late cardiac toxicity is a potentially lethal complication of cancer therapy, yet the pathogenic mechanism remains largely unknown, and few treatment options exist. Here we report DNA-damaging agents such as radiation and anthracycline chemotherapies inducing delayed cardiac inflammation following therapy due to activation of cGAS- and STING-dependent type I interferon signaling. Genetic ablation of cGAS-STING signaling in mice inhibits DNA damage-induced cardiac inflammation, rescues late cardiac functional decline, and prevents death from cardiac events. Treatment with a STING antagonist suppresses cardiac interferon signaling following DNA-damaging therapies and effectively mitigates cardiac toxicity. These results identify a therapeutically targetable, pathogenic mechanism for one of the most vexing treatment-related toxicities in cancer survivors.


Assuntos
Antineoplásicos , Cardiotoxicidade , Dano ao DNA , Neoplasias , Animais , Camundongos , Imunidade Inata , Inflamação , Neoplasias/tratamento farmacológico , Nucleotidiltransferases/genética , Antineoplásicos/efeitos adversos
4.
Nat Commun ; 12(1): 5402, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518527

RESUMO

Chromosomal instability (CIN) and epigenetic alterations have been implicated in tumor progression and metastasis; yet how these two hallmarks of cancer are related remains poorly understood. By integrating genetic, epigenetic, and functional analyses at the single cell level, we show that progression of uveal melanoma (UM), the most common intraocular primary cancer in adults, is driven by loss of Polycomb Repressive Complex 1 (PRC1) in a subpopulation of tumor cells. This leads to transcriptional de-repression of PRC1-target genes and mitotic chromosome segregation errors. Ensuing CIN leads to the formation of rupture-prone micronuclei, exposing genomic double-stranded DNA (dsDNA) to the cytosol. This provokes tumor cell-intrinsic inflammatory signaling, mediated by aberrant activation of the cGAS-STING pathway. PRC1 inhibition promotes nuclear enlargement, induces a transcriptional response that is associated with significantly worse patient survival and clinical outcomes, and enhances migration that is rescued upon pharmacologic inhibition of CIN or STING. Thus, deregulation of PRC1 can promote tumor progression by inducing CIN and represents an opportunity for early therapeutic intervention.


Assuntos
Instabilidade Cromossômica , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Complexo Repressor Polycomb 1/genética , Neoplasias Uveais/genética , Linhagem Celular Tumoral , Segregação de Cromossomos/genética , Progressão da Doença , Células HEK293 , Humanos , Melanoma/metabolismo , Melanoma/patologia , Complexo Repressor Polycomb 1/metabolismo , Prognóstico , RNA-Seq/métodos , Transdução de Sinais/genética , Análise de Sobrevida , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia
5.
Biophys J ; 116(6): 987-999, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30819566

RESUMO

The architectural organization of chromatin can play an important role in genome regulation by affecting the mobility of molecules within its surroundings via binding interactions and molecular crowding. The diffusion of molecules at specific locations in the nucleus can be studied by fluorescence correlation spectroscopy (FCS), a well-established technique based on the analysis of fluorescence intensity fluctuations detected in a confocal observation volume. However, detecting subtle variations of mobility between different chromatin regions remains challenging with currently available FCS methods. Here, we introduce a method that samples multiple positions by slowly scanning the FCS observation volume across the nucleus. Analyzing the data in short time segments, we preserve the high temporal resolution of single-point FCS while probing different nuclear regions in the same cell. Using the intensity level of the probe (or a DNA marker) as a reference, we efficiently sort the FCS segments into different populations and obtain average correlation functions that are associated to different chromatin regions. This sorting and averaging strategy renders the method statistically robust while preserving the observation of intranuclear variations of mobility. Using this approach, we quantified diffusion of monomeric GFP in high versus low chromatin density regions. We found that GFP mobility was reduced in heterochromatin, especially within perinucleolar heterochromatin. Moreover, we found that modulation of chromatin compaction by ATP depletion, or treatment with solutions of different osmolarity, differentially affected the ratio of diffusion in both regions. Then, we used the approach to probe the mobility of estrogen receptor-α in the vicinity of an integrated multicopy prolactin gene array. Finally, we discussed the coupling of this method with stimulated emission depletion FCS for performing FCS at subdiffraction spatial scales.


Assuntos
Cromatina/metabolismo , Movimento , Espectrometria de Fluorescência/métodos , Difusão , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Fatores de Transcrição/metabolismo
6.
Commun Biol ; 1: 10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271897

RESUMO

Raster image correlation spectroscopy (RICS) is a powerful method for measuring molecular diffusion in live cells directly from images acquired on a laser scanning microscope. However, RICS only provides single average diffusion coefficients from regions with a lateral size on the order of few micrometers, which means that its spatial resolution is mainly limited to the cellular level. Here we introduce the local RICS (L-RICS), an easy-to-use tool that generates high resolution maps of diffusion coefficients from images acquired on a laser scanning microscope. As an application we show diffusion maps of a green fluorescent protein (GFP) within the nucleus and within the nucleolus of live cells at an effective spatial resolution of 500 nm. We find not only that diffusion in the nucleolus is slowed down compared to diffusion in the nucleoplasm, but also that diffusion in the nucleolus is highly heterogeneous.

7.
Nat Commun ; 8(1): 65, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684735

RESUMO

The observation of molecular diffusion at different spatial scales, and in particular below the optical diffraction limit (<200 nm), can reveal details of the subcellular topology and its functional organization. Stimulated-emission depletion microscopy (STED) has been previously combined with fluorescence correlation spectroscopy (FCS) to investigate nanoscale diffusion (STED-FCS). However, stimulated-emission depletion fluorescence correlation spectroscopy has only been used successfully to reveal functional organization in two-dimensional space, such as the plasma membrane, while, an efficient implementation for measurements in three-dimensional space, such as the cellular interior, is still lacking. Here we integrate the STED-FCS method with two analytical approaches, the recent separation of photons by lifetime tuning and the fluorescence lifetime correlation spectroscopy, to simultaneously probe diffusion in three dimensions at different sub-diffraction scales. We demonstrate that this method efficiently provides measurement of the diffusion of EGFP at spatial scales tunable from the diffraction size down to ∼80 nm in the cytoplasm of living cells.The measurement of molecular diffusion at sub-diffraction scales has been achieved in 2D space using STED-FCS, but an implementation for 3D diffusion is lacking. Here the authors present an analytical approach to probe diffusion in 3D space using STED-FCS and measure the diffusion of EGFP at different spatial scales.


Assuntos
Difusão , Proteínas de Fluorescência Verde , Microscopia de Fluorescência , Imagem Molecular , Espectrometria de Fluorescência , Imageamento Tridimensional
8.
Sci Rep ; 6: 26658, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27222287

RESUMO

Abscisic acid (ABA), a long known phytohormone, has been recently demonstrated to be present also in humans, where it targets cells of the innate immune response, mesenchymal and hemopoietic stem cells and cells involved in the regulation of systemic glucose homeostasis. LANCL2, a peripheral membrane protein, is the mammalian ABA receptor. We show that N-terminal glycine myristoylation causes LANCL2 localization to the plasmamembrane and to cytoplasmic membrane vesicles, where it interacts with the α subunit of a Gi protein and starts the ABA signaling pathway via activation of adenylate cyclase. Demyristoylation of LANCL2 by chemical or genetic means triggers its nuclear translocation. Nuclear enrichment of native LANCL2 is also induced by ABA treatment. Therefore human LANCL2 is a non-transmembrane G protein-coupled receptor susceptible to hormone-induced nuclear translocation.


Assuntos
Ácido Abscísico/farmacologia , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Lipoilação/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Membrana Celular/genética , Núcleo Celular/genética , Células HEK293 , Células HeLa , Humanos , Lipoilação/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Proteínas de Ligação a Fosfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA