Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(18): e2308276, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514919

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) continuously generate platelets throughout one's life. Inherited Platelet Disorders affect ≈ 3 million individuals worldwide and are characterized by defects in platelet formation or function. A critical challenge in the identification of these diseases lies in the absence of models that facilitate the study of hematopoiesis ex vivo. Here, a silk fibroin-based bioink is developed and designed for 3D bioprinting. This bioink replicates a soft and biomimetic environment, enabling the controlled differentiation of HSPCs into platelets. The formulation consisting of silk fibroin, gelatin, and alginate is fine-tuned to obtain a viscoelastic, shear-thinning, thixotropic bioink with the remarkable ability to rapidly recover after bioprinting and provide structural integrity and mechanical stability over long-term culture. Optical transparency allowed for high-resolution imaging of platelet generation, while the incorporation of enzymatic sensors allowed quantitative analysis of glycolytic metabolism during differentiation that is represented through measurable color changes. Bioprinting patient samples revealed a decrease in metabolic activity and platelet production in Inherited Platelet Disorders. These discoveries are instrumental in establishing reference ranges for classification and automating the assessment of treatment responses. This model has far-reaching implications for application in the research of blood-related diseases, prioritizing drug development strategies, and tailoring personalized therapies.


Assuntos
Bioimpressão , Plaquetas , Diferenciação Celular , Fibroínas , Hematopoese , Impressão Tridimensional , Fibroínas/metabolismo , Fibroínas/química , Bioimpressão/métodos , Humanos , Plaquetas/metabolismo , Hematopoese/fisiologia , Tinta , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Gelatina/química
3.
Res Pract Thromb Haemost ; 7(4): 100197, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37416054

RESUMO

A State of the Art lecture titled "Megakaryocytes and different thrombopoietic environments" was presented at the ISTH Congress in 2022. Circulating platelets are specialized cells produced by megakaryocytes. Leading studies point to the bone marrow niche as the core of hematopoietic stem cell differentiation, revealing interesting and complex environmental factors for consideration. Megakaryocytes take cues from the physiochemical bone marrow microenvironment, which includes cell-cell interactions, contact with extracellular matrix components, and flow generated by blood circulation in the sinusoidal lumen. Germinal and acquired mutations in hematopoietic stem cells may manifest in altered megakaryocyte maturation, proliferation, and platelet production. Diseased megakaryopoiesis may also cause modifications of the entire hematopoietic niche, highlighting the central role of megakaryocytes in the control of physiologic bone marrow homeostasis. Tissue-engineering approaches have been developed to translate knowledge from in vivo (inside) to functional mimics of native tissue ex vivo (outside). Reproducing the thrombopoietic environment is instrumental to gain new insight into its activity and answering the growing demand for human platelets for fundamental studies and clinical applications. In this review, we discuss the major achievements on this topic, and finally, we summarize relevant new data presented during the 2022 ISTH Congress that pave the road to the future of megakaryopoiesis.

4.
Blood ; 141(4): 406-421, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36395340

RESUMO

Glycosylation is recognized as a key process for proper megakaryopoiesis and platelet formation. The enzyme uridine diphosphate (UDP)-galactose-4-epimerase, encoded by GALE, is involved in galactose metabolism and protein glycosylation. Here, we studied 3 patients from 2 unrelated families who showed lifelong severe thrombocytopenia, bleeding diathesis, mental retardation, mitral valve prolapse, and jaundice. Whole-exome sequencing revealed 4 variants that affect GALE, 3 of those previously unreported (Pedigree A, p.Lys78ValfsX32 and p.Thr150Met; Pedigree B, p.Val128Met; and p.Leu223Pro). Platelet phenotype analysis showed giant and/or grey platelets, impaired platelet aggregation, and severely reduced alpha and dense granule secretion. Enzymatic activity of the UDP-galactose-4-epimerase enzyme was severely decreased in all patients. Immunoblotting of platelet lysates revealed reduced GALE protein levels, a significant decrease in N-acetyl-lactosamine (LacNAc), showing a hypoglycosylation pattern, reduced surface expression of gylcoprotein Ibα-IX-V (GPIbα-IX-V) complex and mature ß1 integrin, and increased apoptosis. In vitro studies performed with patients-derived megakaryocytes showed normal ploidy and maturation but decreased proplatelet formation because of the impaired glycosylation of the GPIbα and ß1 integrin, and reduced externalization to megakaryocyte and platelet membranes. Altered distribution of filamin A and actin and delocalization of the von Willebrand factor were also shown. Overall, this study expands our knowledge of GALE-related thrombocytopenia and emphasizes the critical role of GALE in the physiological glycosylation of key proteins involved in platelet production and function.


Assuntos
Trombocitopenia , UDPglucose 4-Epimerase , Humanos , Plaquetas/metabolismo , Galactose/metabolismo , Glicosilação , Integrina beta1/metabolismo , Megacariócitos/metabolismo , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombopoese/genética , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo , Difosfato de Uridina/metabolismo
5.
Blood Adv ; 5(23): 5150-5163, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34547769

RESUMO

Hemostatic abnormalities and impaired platelet function have been described in patients affected by connective tissue disorders. We observed a moderate bleeding tendency in patients affected by collagen VI-related disorders and investigated the defects in platelet functionality, whose mechanisms are unknown. We demonstrated that megakaryocytes express collagen VI that is involved in the regulation of functional platelet production. By exploiting a collagen VI-null mouse model (Col6a1-/-), we found that collagen VI-null platelets display significantly increased susceptibility to activation and intracellular calcium signaling. Col6a1-/- megakaryocytes and platelets showed increased expression of stromal interaction molecule 1 (STIM1) and ORAI1, the components of store-operated calcium entry (SOCE), and activation of the mammalian target of rapamycin (mTOR) signaling pathway. In vivo mTOR inhibition by rapamycin reduced STIM1 and ORAI1 expression and calcium flows, resulting in a normalization of platelet susceptibility to activation. These defects were cell autonomous, because transplantation of lineage-negative bone marrow cells from Col6a1-/- mice into lethally irradiated wild-type animals showed the same alteration in SOCE and platelet activation seen in Col6a1-/- mice. Peripheral blood platelets of patients affected by collagen VI-related diseases, Bethlem myopathy and Ullrich congenital muscular dystrophy, displayed increased expression of STIM1 and ORAI1 and were more prone to activation. Altogether, these data demonstrate the importance of collagen VI in the production of functional platelets by megakaryocytes in mouse models and in collagen VI-related diseases.


Assuntos
Plaquetas , Sinalização do Cálcio , Animais , Plaquetas/metabolismo , Colágeno , Humanos , Megacariócitos/metabolismo , Camundongos , Proteína ORAI1/genética , Proteína ORAI1/metabolismo
6.
Am J Hematol ; 93(5): 615-622, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29359451

RESUMO

Splenic hematopoiesis is a major feature in the course of myelofibrosis (MF). In fact, the spleen of patients with MF contains malignant hematopoietic stem cells retaining a complete differentiation program, suggesting both a pivotal role of the spleen in maintaining the disease and a tight regulation of hematopoiesis by the splenic microenvironment, in particular by mesenchymal stromal cells (MSCs). Little is known about splenic MSCs (Sp-MSCs), both in normal and in pathological context. In this work, we have in vitro expanded and characterized Sp-MSCs from 25 patients with MF and 13 healthy subjects (HS). They shared similar phenotype, growth kinetics, and differentiation capacity. However, MF Sp-MSCs expressed significant lower levels of nestin, and favored megakaryocyte (Mk) differentiation in vitro at a larger extent than their normal counterpart. Moreover, they showed a significant upregulation of matrix metalloprotease 2 (MMP2) and fibronectin 1 (FN1) genes both at mRNA expression and at protein level, and, finally, developed genetic abnormalities which were never detected in HS-derived Sp-MSCs. Our data point toward the existence of a defective splenic niche in patients with MF that could be responsible of some pathological features of the disease, including the increased trafficking of CD34+ cells and the expansion of the megakaryocytic lineage.


Assuntos
Células-Tronco Mesenquimais/patologia , Mielofibrose Primária/patologia , Baço/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD34 , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Feminino , Fibronectinas/metabolismo , Hematopoese , Humanos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Megacariócitos/patologia , Pessoa de Meia-Idade , Nestina/metabolismo , Adulto Jovem
7.
Haematologica ; 102(7): 1150-1160, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28411253

RESUMO

Megakaryocytes (MK) in the bone marrow (BM) are immersed in a network of extracellular matrix components that regulates platelet release into the circulation. Combining biological and bioengineering approaches, we found that the activation of transient receptor potential cation channel subfamily V member 4 (TRPV4), a mechano-sensitive ion channel, is induced upon MK adhesion on softer matrices. This response promoted platelet production by triggering a cascade of events that lead to calcium influx, ß1 integrin activation and internalization, and Akt phosphorylation, responses not found on stiffer matrices. Lysyl oxidase (LOX) is a physiological modulator of BM matrix stiffness via collagen crosslinking. In vivo inhibition of LOX and consequent matrix softening lead to TRPV4 activation cascade and increased platelet levels. At the same time, in vitro proplatelet formation was reduced on a recombinant enzyme-mediated stiffer collagen. These results suggest a novel mechanism by which MKs, through TRPV4, sense extracellular matrix environmental rigidity and release platelets accordingly.


Assuntos
Plaquetas/citologia , Plaquetas/metabolismo , Megacariócitos/citologia , Megacariócitos/metabolismo , Trombopoese , Animais , Cálcio/metabolismo , Adesão Celular , Diferenciação Celular , Colágeno Tipo I/metabolismo , Colágeno Tipo IV/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Integrina beta1/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico , Proteína-Lisina 6-Oxidase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Cátion TRPV/metabolismo
8.
J Biol Chem ; 292(8): 3239-3251, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28049729

RESUMO

Abscisic acid (ABA) is a phytohormone involved in pivotal physiological functions in higher plants. Recently, ABA has been proven to be also secreted and active in mammals, where it stimulates the activity of innate immune cells, mesenchymal and hematopoietic stem cells, and insulin-releasing pancreatic ß cells through a signaling pathway involving the second messenger cyclic ADP-ribose (cADPR). In addition to behaving like an animal hormone, ABA also holds promise as a nutraceutical plant-derived compound in humans. Many biological functions of ABA in mammals are mediated by its binding to the LANCL-2 receptor protein. A putative binding of ABA to GRP78, a key regulator of endoplasmic reticulum stress, has also been proposed. Here we investigated the role of exogenous ABA in modulating thrombopoiesis, the process of platelet generation. Our results demonstrate that expression of both LANCL-2 and GRP78 is up-regulated during hematopoietic stem cell differentiation into mature megakaryocytes (Mks). Functional ABA receptors exist in mature Mks because ABA induces an intracellular Ca2+ increase ([Ca2+] i ) through PKA activation and subsequent cADPR generation. In vitro exposure of human or murine hematopoietic progenitor cells to 10 µm ABA does not increase recombinant thrombopoietin (rTpo)-dependent Mk differentiation or platelet release. However, under conditions of cell stress induced by rTpo and serum deprivation, ABA stimulates, in a PKA- and cADPR-dependent fashion, the mitogen-activated kinase ERK 1/2, resulting in the modulation of lymphoma 2 (Bcl-2) family members, increased Mk survival, and higher rates of platelet production. In conclusion, we demonstrate that ABA is a prosurvival factor for Mks in a Tpo-independent manner.


Assuntos
Ácido Abscísico/farmacologia , Megacariócitos/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Trombopoese/efeitos dos fármacos , Animais , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Humanos , Megacariócitos/citologia , Megacariócitos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Fosfato , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Superfície Celular/metabolismo , Trombopoetina/metabolismo
9.
PLoS One ; 11(6): e0156990, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27281335

RESUMO

Primary myelofibrosis (PMF) is a Philadelphia-negative (Ph-) myeloproliferative disorder, showing abnormal CD34+ progenitor cell trafficking, splenomegaly, marrow fibrosis leading to extensive extramedullary haematopoiesis, and abnormal neoangiogenesis in either the bone marrow or the spleen. Monocytes expressing the angiopoietin-2 receptor (Tie2) have been shown to support abnormal angiogenic processes in solid tumors through a paracrine action that takes place in proximity to the vessels. In this study we investigated the frequency of Tie2 expressing monocytes in the spleen tissue samples of patients with PMF, and healthy subjects (CTRLs), and evaluated their possible role in favouring spleen angiogenesis. We show by confocal microscopy that in the spleen tissue of patients with PMF, but not of CTRLs, the most of the CD14+ cells are Tie2+ and are close to vessels; by flow cytometry, we found that Tie2 expressing monocytes were Tie2+CD14lowCD16brightCDL62-CCR2- (TEMs) and their frequency was higher (p = 0.008) in spleen tissue-derived mononuclear cells (MNCs) of patients with PMF than in spleen tissue-derived MNCs from CTRLs undergoing splenectomy for abdominal trauma. By in vitro angiogenesis assay we evidenced that conditioned medium of immunomagnetically selected spleen tissue derived CD14+ cells of patients with PMF induced a denser tube like net than that of CTRLs; in addition, CD14+Tie2+ cells sorted from spleen tissue derived single cell suspension of patients with PMF show a higher expression of genes involved in angiogenesis than that found in CTRLs. Our results document the enrichment of Tie2+ monocytes expressing angiogenic genes in the spleen of patients with PMF, suggesting a role for these cells in starting/maintaining the pathological angiogenesis in this organ.


Assuntos
Monócitos/metabolismo , Neovascularização Patológica/metabolismo , Mielofibrose Primária/metabolismo , Receptor TIE-2/metabolismo , Baço/metabolismo , Idoso , Estudos de Casos e Controles , Diferenciação Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/patologia , Mielofibrose Primária/patologia , Mielofibrose Primária/cirurgia , Baço/patologia , Esplenectomia
10.
Haematologica ; 99(4): 769-78, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24463213

RESUMO

Platelet release by megakaryocytes is regulated by a concert of environmental and autocrine factors. We previously showed that constitutively released adenosine diphosphate by human megakaryocytes leads to platelet production. Here we show that adenosine diphosphate elicits, in human megakaryocytes, an increase in cytosolic calcium concentration, followed by a plateau, which is lowered in the absence of extracellular calcium, suggesting the involvement of Store-Operated Calcium Entry. Indeed, we demonstrate that megakaryocytes express the major candidates to mediate Store-Operated Calcium Entry, stromal interaction molecule 1, Orai1 and canonical transient receptor potential 1, which are activated upon either pharmacological or physiological depletion of the intracellular calcium pool. This mechanism is inhibited by phospholipase C or inositol-3-phosphate receptor inhibitors and by a specific calcium entry blocker. Studies on megakaryocyte behavior, on extracellular matrix proteins that support proplatelet extension, show that calcium mobilization from intracellular stores activates signaling cascades that trigger megakaryocyte adhesion and proplatelet formation, and promotes extracellular calcium entry which is primarily involved in the regulation of the contractile force responsible for megakaryocyte motility. These findings provide the first evidence that both calcium mobilization from intracellular stores and extracellular calcium entry specifically regulate human megakaryocyte functions.


Assuntos
Cálcio/metabolismo , Megacariócitos/metabolismo , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Adulto , Sinalização do Cálcio/efeitos dos fármacos , Adesão Celular , Movimento Celular , Células Cultivadas , Colágeno Tipo I/metabolismo , Espaço Extracelular/metabolismo , Feminino , Humanos , Megacariócitos/efeitos dos fármacos , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trombopoese/efeitos dos fármacos , Trombopoese/fisiologia
11.
Haematologica ; 98(4): 514-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23403314

RESUMO

Megakaryocytes release platelets into the bloodstream by elongating proplatelets. In this study, we showed that human megakaryocytes constitutively release Transforming Growth Factor ß1 and express its receptors. Importantly, Transforming Growth Factor ß1 downstream signaling, through SMAD2/3 phosphorylation, was shown to be active in megakaryocytes extending proplatelets, indicating a type of autocrine stimulation on megakaryocyte development. Furthermore, inactivation of Transforming Growth Factor ß1 signaling, by the receptor inhibitors SB431542 and Stemolecule ALK5 inhibitor, determined a significant decrease in proplatelet formation. Recent studies indicated a crucial role of Transforming Growth Factor ß1 in the pathogenesis of primary myelofibrosis. We demonstrated that primary myelofibrosis-derived megakaryocytes expressed increased levels of bioactive Transforming Growth Factor ß1; however, higher levels of released Transforming Growth Factor ß1 did not lead to enhanced activation of downstream pathways. Overall, these data propose Transforming Growth Factor ß1 as a new element in the autocrine regulation of proplatelet formation in vitro. Despite the increase in Transforming Growth Factor ß1 this mechanism seems to be preserved in primary myelofibrosis.


Assuntos
Comunicação Autócrina , Megacariócitos/metabolismo , Mielofibrose Primária/genética , Fator de Crescimento Transformador beta1/genética , Benzamidas/farmacologia , Plaquetas/citologia , Plaquetas/metabolismo , Western Blotting , Células Cultivadas , Dioxóis/farmacologia , Expressão Gênica , Humanos , Megacariócitos/citologia , Fosforilação , Mielofibrose Primária/sangue , Mielofibrose Primária/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
12.
Haematologica ; 97(11): 1657-65, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22689668

RESUMO

BACKGROUND: The interaction of adenosine diphosphate with its P2Y(1) and P2Y(12) receptors on platelets is important for platelet function. However, nothing is known about adenosine diphosphate and its function in human megakaryocytes. DESIGN AND METHODS: We studied the role of adenosine diphosphate and P2Y receptors on proplatelet formation by human megakaryocytes in culture. RESULTS: Megakaryocytes expressed all the known eight subtypes of P2Y receptors, and constitutively released adenosine diphosphate. Proplatelet formation was inhibited by the adenosine diphosphate scavengers apyrase and CP/CPK by 60-70% and by the P2Y(12) inhibitors cangrelor and 2-MeSAMP by 50-60%, but was not inhibited by the P2Y(1) inhibitor MRS 2179. However, the active metabolites of the anti-P2Y(12) drugs, clopidogrel and prasugrel, did not inhibit proplatelet formation. Since cangrelor and 2-MeSAMP also interact with P2Y(13), we hypothesized that P2Y(13), rather than P2Y(12) is involved in adenosine diphosphate-regulated proplatelet formation. The specific P2Y(13) inhibitor MRS 2211 inhibited proplatelet formation in a concentration-dependent manner. Megakaryocytes from a patient with severe congenital P2Y(12) deficiency showed normal proplatelet formation, which was inhibited by apyrase, cangrelor or MRS 2211 by 50-60%. The platelet count of patients with congenital delta-storage pool deficiency, who lack secretable adenosine diphosphate, was significantly lower than that of patients with other platelet function disorders, confirming the important role of secretable adenosine diphosphate in platelet formation. CONCLUSIONS: This is the first demonstration that adenosine diphosphate released by megakaryocytes regulates their function by interacting with P2Y(13). The clinical relevance of this not previously described physiological role of adenosine diphosphate and P2Y(13) requires further exploration.


Assuntos
Difosfato de Adenosina/metabolismo , Plaquetas/metabolismo , Células Progenitoras de Megacariócitos/metabolismo , Megacariócitos/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2/metabolismo , Apirase/farmacologia , Plaquetas/citologia , Células Cultivadas , Feminino , Sangue Fetal , Humanos , Masculino , Células Progenitoras de Megacariócitos/citologia , Megacariócitos/citologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA