Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 227(3): 423-433, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36482781

RESUMO

BACKGROUND: Monocyte activation is a driver of inflammation in the course of chronic HIV infection. Prostaglandin E2 (PGE2) is known to mediate anti-inflammatory effects, notably the inhibition of tumor necrosis factor- (TNF-) production by monocytes. We aim to investigate the effects of PGE2 on activation of monocytes in chronic HIV infection and the mechanisms through which PGE2 modulates their inflammatory signature. METHODS: We recruited a group of people with HIV (PWH) and matched healthy uninfected persons. We compared plasma levels of PGE2, monocyte activation, and sensitivity of monocytes to the inhibitory actions mediated by PGE2. RESULTS: We found increased plasma levels of PGE2 in PWH, and an activated phenotype in circulating monocytes, compared with uninfected individuals. Monocytes from PWH showed a significant resistance to the inhibitory actions mediated by PGE2; the concentration of PGE2 able to inhibit 50 of the production of TNF- by lipopolysaccharide-stimulated monocytes was 10 times higher in PWH compared with uninfected controls. Furthermore, the expression of phosphodiesterase 4B, a negative regulator of PGE2 activity, was significantly increased in monocytes from PWH. CONCLUSIONS: Resistance to the inhibitory actions mediated by PGE2 could account, at least in part, for the inflammatory profile of circulating monocytes in PWH.


Assuntos
Dinoprostona , Infecções por HIV , Humanos , Dinoprostona/metabolismo , Monócitos/metabolismo , Infecções por HIV/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Expressão Gênica , Lipopolissacarídeos
2.
Cell Rep Med ; 3(8): 100706, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35926505

RESUMO

Heterologous vaccination against coronavirus disease 2019 (COVID-19) provides a rational strategy to rapidly increase vaccination coverage in many regions of the world. Although data regarding messenger RNA (mRNA) and ChAdOx1 vaccine combinations are available, there is limited information about the combination of these platforms with other vaccines widely used in developing countries, such as BBIBP-CorV and Sputnik V. Here, we assess the immunogenicity and reactogenicity of 15 vaccine combinations in 1,314 participants. We evaluate immunoglobulin G (IgG) anti-spike response and virus neutralizing titers and observe that a number of heterologous vaccine combinations are equivalent or superior to homologous schemes. For all cohorts in this study, the highest antibody response is induced by mRNA-1273 as the second dose. No serious adverse events are detected in any of the schedules analyzed. Our observations provide rational support for the use of different vaccine combinations to achieve wide vaccine coverage in the shortest possible time.


Assuntos
COVID-19 , Vacinas Virais , Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Imunização , RNA Mensageiro/genética , SARS-CoV-2 , Vacinação
4.
Br J Haematol ; 197(3): 283-292, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35076084

RESUMO

Severe COVID-19 is associated with a systemic inflammatory response and progressive CD4+ T-cell lymphopenia and dysfunction. We evaluated whether platelets might contribute to CD4+ T-cell dysfunction in COVID-19. We observed a high frequency of CD4+ T cell-platelet aggregates in COVID-19 inpatients that inversely correlated with lymphocyte counts. Platelets from COVID-19 inpatients but not from healthy donors (HD) inhibited the upregulation of CD25 expression and tumour necrosis factor (TNF)-α production by CD4+ T cells. In addition, interferon (IFN)-γ production was increased by platelets from HD but not from COVID-19 inpatients. A high expression of PD-L1 was found in platelets from COVID-19 patients to be inversely correlated with IFN-γ production by activated CD4+ T cells cocultured with platelets. We also found that a PD-L1-blocking antibody significantly restored platelets' ability to stimulate IFN-γ production by CD4+ T cells. Our study suggests that platelets might contribute to disease progression in COVID-19 not only by promoting thrombotic and inflammatory events, but also by affecting CD4+ T cells functionality.


Assuntos
Antígeno B7-H1 , COVID-19 , Antígeno B7-H1/metabolismo , Plaquetas/metabolismo , Linfócitos T CD4-Positivos , Humanos , Interferon gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA