Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39165728

RESUMO

Visible-light-operated photoswitches are of growing interest in reversibly controlling molecular processes, enabling for example the precise spatiotemporal focusing of drug activity and manipulating the properties of materials. Therefore, many research efforts have been spent on seeking control over the (photo)physical properties of photoswitches, in particular the absorption maxima and the half-life. For photopharmacological applications, photoswitches should ideally be operated by visible light in at least one direction, and feature a metastable isomer with a half-life of 0.1-10 seconds. Here we present our efforts towards the engineering of the half-life of iminothioindoxyl (ITI) photoswitches, a recently discovered class of visible-light-responsive photochromes, whose applicability was hitherto limited by half-lives in the low millisecond range. Through the synthesis and characterization of a library of ITI photoswitches, we discovered variants with a substantially increased thermal stability, reaching half-lives of up to 0.2 seconds. Based on spectroscopic and computational analyses, we demonstrate how different substituent positions on the ITI molecule can be used to tune its photophysical properties independently to fit the desired application. Additionally, the unique reactivity of the ITI derivative that featured a perfluoro-aromatic ring and had the most long-lived metastable state was shown to be useful for labeling of nucleophilic functional groups. The present research thus paves the way for using ITI photoswitches in photopharmacology and chemical biology.

2.
Chem Commun (Camb) ; 60(70): 9388-9391, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39132823

RESUMO

Here we present the formation of an iminothioindoxyl (ITI)⊂Cage complex that retains the photochemical properties of the photoswitch within a confined environment in water. At the same time, besides ultrafast switching inside the cage, the ITI photoswitch displays an intriguing bifurcation of the excited state isomerization pathway when encapsulated.

3.
Chem Sci ; 15(28): 10867-10881, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39027280

RESUMO

The photochemistry of two representative thermally activated delayed fluorescence (TADF) emitters based on the multiple resonance effect (MRE) (DABNA-1 and DtBuCzB) was studied. No significant TADF was observed in fluid solution, although the compounds have a long-lived triplet state (ca. 30 µs). We found that these planar boron molecules bind with Lewis bases, e.g., 4-dimethylaminopyridine (DMAP) or an N-heterocyclic carbene (NHC). A new blue-shifted absorption band centered at 368 nm was observed for DtBuCzB upon formation of the adduct; however, the fluorescence of the adduct is the same as that of the free DtBuCzB. We propose that photo-dissociation occurs for the DtBuCzB-DMAP adduct, which is confirmed by femtosecond transient absorption spectra, implying that fluorescence originates from DtBuCzB produced by photo-dissociation; the subsequent in situ re-binding was observed with nanosecdon transient absorption spectroscopy. No photo-dissociation was observed for the NHC adduct. Time-resolved electron paramagnetic resonance (TREPR) spectra show that the triplet states of DABNA-1 and DtBuCzB have similar zero field splitting (ZFS) parameters (D = 1450 MHz). Theoretical studies show that the slow ISC is due to small SOC and weak Herzberg-Teller coupling, although the S1/T1 energy gap is small (0.14 eV), which rationalizes the lack of TADF.

4.
Chem Sci ; 15(29): 11557-11563, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39055031

RESUMO

The light-induced photocycloaddition of 9,10-phenanthrenequinone (PQ) with electron-rich alkenes (ERA), known as the PQ-ERA reaction, is a highly attractive photoclick reaction characterized by its operational simplicity and high biocompatibility. One essential aspect of photoclick reactions is their high rate, however the limited solubility of PQs often requires the use of a co-solvent. Evaluating the effect of different co-solvents on the PQ-ERA reaction and their influence on the reaction rate, we discovered that sulfur-containing compounds, in particular the frequently used solubilizing co-solvent DMSO, quench the triplet state of the PQ. These experimental results, supported by nanosecond-microsecond and ultrafast transient absorption data, show that even minimal amounts of DMSO result in a decreased lifetime of the reactive triplet state, essential for the photoclick reaction. Without DMSO as co-solvent, exceptionally high photoreaction quantum yields ( Φ P up to 93% with only 1 equivalent ERA) and complete conversion in seconds can be achieved. With these outstanding efficiencies, the PQ-ERA reaction can be used without excess ERA and at low light intensities, facilitating photoclick transformations in various future applications.

5.
Angew Chem Int Ed Engl ; 63(21): e202319321, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511339

RESUMO

Photoclick reactions combine the advantages offered by light-driven processes and classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photo-crosslinking, and protein labeling. Despite these advances, the dependency of most of the photoclick reactions on UV light poses a severe obstacle for their general implementation, as this light can be absorbed by other molecules in the system resulting in their degradation or unwanted reactivity. However, the development of a simple and efficient system to achieve bathochromically shifted photoclick transformations remains challenging. Here, we introduce triplet-triplet energy transfer as a fast and selective way to enable visible light-induced photoclick reactions. Specifically, we show that 9,10-phenanthrenequinones (PQs) can efficiently react with electron-rich alkenes (ERAs) in the presence of a catalytic amount (as little as 5 mol %) of photosensitizers. The photocycloaddition reaction can be achieved under green (530 nm) or orange (590 nm) light irradiation, representing a bathochromic shift of over 100 nm as compared to the classical PQ-ERAs system. Furthermore, by combining appropriate reactants, we establish an orthogonal, blue and green light-induced photoclick reaction system in which the product distribution can be precisely controlled by the choice of the color of light.

6.
Inorg Chem ; 63(14): 6248-6259, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38533555

RESUMO

The covalent modification of Ru(II) polypyridyl complexes (RPCs) with organic chromophores is a powerful strategy to obtain metal-based photosensitizer agents (PSs) with improved performance for application in photodynamic therapy (PDT). In this respect, perylene-imides are of particular interest due to their rich chemical-physical repertoire, and it is therefore quite surprising that their combination with RPCs has been poorly considered so far. Herein, we report on the photophysical behavior of two newly synthesized RPCs bearing a perylene monoimide appendant (PMI-Ad). Differently from the majority of RPCs-perylene-imides dyads, these chromophores are dissymmetric and are tethered to the metal centers through a single C-C bond in the 3- or 5-position of 1,10-phenanthroline (Ru-3PMI-Ad and Ru-5PMI-Ad). Both compounds show excellent singlet oxygen photosensitizing activity, with quantum yields reaching >90% in the case of Ru-3PMI-Ad. A combined spectroscopic and theoretical analysis, also involving transient absorption and luminescence lifetime measurements, demonstrates that both compounds undergo intersystem crossing on a very fast time scale (tens of picoseconds) and with high efficiency. Our results further demonstrate that the increased electron delocalization between the metal center and the PMI-Ad chromophore observed for Ru-3PMI-Ad additionally contributes to increase the singlet oxygen quantum yields by prolonging the lifetime of the triplet state.

7.
Chem Commun (Camb) ; 60(17): 2385-2388, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38321968

RESUMO

We present a red light-activated zincII bis(dipyrrin) symmetry breaking charge transfer (SBCT) architecture, showing a large molar absorption coefficient (ε = 15.4 × 104 M-1 cm-1), high reactive singlet oxygen generation efficiency (ΦΔ ≈ 0.8) and long-lived triplet state (τT = 150 µs) compared to the donor-acceptor analogue dipyrrin-BF2 complex, highlighting the superiority of the SBCT approach. For the first time, we demonstrated the potential of a SBCT scaffold in red-light-induced methyl methacrylate (MMA) polymerization, using a dual photocatalyst excitation approach.

8.
Chemistry ; 30(1): e202302619, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37788976

RESUMO

The current work focuses on the investigation of two functionalized naphthyridine derivatives, namely ODIN-EtPh and ODIN-But, to gain insights into the hydrogen bond-assisted H-aggregate formation and its impact on the optical properties of ODIN molecules. By employing a combination of X-ray and electron crystallography, absorption and emission spectroscopy, time resolved fluorescence and ultrafast pump-probe spectroscopy (visible and infrared) we unravel the correlation between the structure and light-matter response, with a particular emphasis on the influence of the polarity of the surrounding environment. Our experimental results and simulations confirm that in polar and good hydrogen-bond acceptor solvents (DMSO), the formation of dimers for ODIN derivatives is strongly inhibited. The presence of a phenyl group linked to the ureidic unit favors the folding of ODIN derivatives (forming an intramolecular hydrogen bond) leading to the stabilization of a charge-transfer excited state which almost completely quenches its fluorescence emission. In solvents with a poor aptitude for forming hydrogen bonds, the formation of dimers is favored and gives rise to H aggregates, with a consequent considerable reduction in the fluorescence emission. The urea-bound phenyl group furtherly stabilizes the dimers in chloroform.

10.
J Am Chem Soc ; 145(36): 19894-19902, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37656631

RESUMO

Azonium ions formed by the protonation of tetra-ortho-methoxy-substituted aminoazobenzenes photoisomerize with red light under physiological conditions. This property makes them attractive as molecular tools for the photocontrol of physiological processes, for example, in photopharmacology. However, a mechanistic understanding of the photoisomerization process and subsequent thermal relaxation is necessary for the rational application of these compounds as well as for guiding the design of derivatives with improved properties. Using a combination of sub-ps/ns transient absorption measurements and quantum chemical calculations, we show that the absorption of a photon by the protonated E-H+ form of the photoswitch causes rapid (ps) isomerization to the protonated Z-H+ form, which can also absorb red light. Proton transfer to solvent then occurs on a microsecond time scale, leading to an equilibrium between Z and Z-H+ species, the position of which depends on the solution pH. Whereas thermal isomerization of the neutral Z form to the neutral E form is slow (∼0.001 s-1), thermal isomerization of Z-H+ to E-H+ is rapid (∼100 s-1), so the solution pH also governs the rate at which E/E-H+ concentrations are restored after a light pulse. This analysis provides the first complete mechanistic picture that explains the observed intricate photoswitching behavior of azonium ions at a range of pH values. It further suggests features of azonium ions that could be targeted for improvement to enhance the applicability of these compounds for the photocontrol of biomolecules.

11.
Chem Sci ; 14(32): 8458-8465, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37592992

RESUMO

We present a class of visible-light-driven molecular motors based on barbituric acid. Due to a serendipitous reactivity we observed during their synthesis, these motors possess a tertiary stereogenic centre on the upper half, characterised by a hydroxy group. Using a combination of femto- and nanosecond transient absorption spectroscopy, molecular dynamics simulations and low-temperature 1H NMR experiments we found that these motors operate similarly to push-pull second-generation overcrowded alkene-based molecular motors. Interestingly, the hydroxy group at the stereocentre enables a hydrogen bond with the carbonyl groups of the barbituric acid lower half, which drives a sub-picosecond excited-state isomerisation, as observed spectroscopically. Computational simulations predict an excited state "lasso" mechanism where the intramolecular hydrogen bond pulls the molecule towards the formation of the metastable state, with a high predicted quantum yield of isomerisation (68%) in gas phase.

12.
J Phys Chem B ; 127(31): 6982-6998, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37527418

RESUMO

To study the charge separation (CS) and long-lived CS state, we prepared a series of dyads based on naphthalimide (NI, electron acceptor) and phenothiazine (PTZ, electron donor), with an intervening phenyl linker attached on the N-position of both moieties. The purpose is to exploit the electron spin control effect to prolong the CS-state lifetime by formation of the 3CS state, instead of the ordinary 1CS state, the spin-correlated radical pair (SCRP), or the free ion pairs. The electronic coupling magnitude is tuned by conformational restriction exerted by the methyl groups on the phenyl linker. Differently from the previously reported NI-PTZ analogues containing long and flexible linkers, we observed a significant CS emission band centered at ca. 600 nm and thermally activated delayed fluorescence (TADF) with a lifetime of 13.8 ns (population ratio: 42%)/321.6 µs (56%). Nanosecond transient absorption spectroscopy indicates that in cyclohexane (CHX), only the 3NI* state was observed (lifetime τ = 274.7 µs), in acetonitrile (ACN), only the CS state was observed (τ = 1.4 µs), whereas in a solvent with intermediate polarity, such as toluene (TOL), both the 3NI* (shorter-lived) and the CS states were observed. Observation of the long-lived CS state in ACN, yet lack of TADF, confirms the spin-vibronic coupling theoretical model of TADF. Femtosecond transient absorption spectroscopy indicates that charge separation occurs in both nonpolar and polar solvents, with time constants ranging from less than 1 ps in ACN to ca. 60 ps in CHX. Time-resolved electron paramagnetic resonance (TREPR) spectra indicate the existence of the 3NI* and CS states for the dyads upon photoexcitation. The electron spin-spin dipole interaction magnitude of the radical anion and cation of the CS state is intermediate between that of a typical SCRP and a 3CS state, suggesting that the long CS-state lifetime is partially due to the electron spin control effect.

13.
Chem Sci ; 14(27): 7465-7474, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37449069

RESUMO

The light-induced photocycloaddition of 9,10-phenanthrenequinone (PQ) with electron-rich alkenes (ERA), known as the PQ-ERA reaction, is a highly attractive photoclick reaction characterized by high selectivity, external non-invasive control with light and biocompatibility. The conventionally used PQ compounds show limited reactivity, which hinders the overall efficiency of the PQ-ERA reaction. To address this issue, we present in this study a simple strategy to boost the reactivity of the PQ triplet state to further enhance the efficiency of the PQ-ERA reaction, enabled by thiophene substitution at the 3-position of the PQ scaffold. Our investigations show that this substitution pattern significantly increases the population of the reactive triplet state (3ππ*) during excitation of 3-thiophene PQs. This results in a superb photoreaction quantum yield (ΦP, up to 98%), high second order rate constants (k2, up to 1974 M-1 s-1), and notable oxygen tolerance for the PQ-ERA reaction system. These results have been supported by both experimental transient absorption data and theoretical calculations, providing further evidence for the effectiveness of this strategy, and offering fine prospects for fast and efficient photoclick transformations.

14.
Mater Horiz ; 10(10): 4172-4182, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37522331

RESUMO

The design of efficient organic electronic devices, including OLEDs, OPVs, luminescent solar concentrators, etc., relies on the optimization of relevant materials, often constituted by an active (functional) dye embedded in a matrix. Understanding solid state solvation (SSS), i.e. how the properties of the active dye are affected by the matrix, is therefore an issue of fundamental and technological relevance. Here an extensive experimental and theoretical investigation is presented shedding light on this, somewhat controversial, topic. The spectral properties of the dye at equilibrium, i.e. absorption and Raman spectra, are not affected by the matrix dynamics. Reliable estimates of the matrix polarity are then obtained from an analysis of the micro-Raman spectra of polar dyes. Specifically, to establish a reliable polarity scale, the spectra of DCM or NR dispersed in amorphous matrices are compared with the spectra of the same dyes in liquid solvents with known polarity. On the other hand, steady-state emission spectra obtained in solid matrices depend in a highly non-trivial way on the matrix polarity and its dynamics. An extensive experimental and theoretical analysis of the time-resolved emission spectra of NR in a very large time window (15 fs-15 ns) allows us to validate this dye as a good probe of the dielectric dynamics of the surrounding medium. We provide a first assessment of the relaxation dynamics of two matrices (mCBPCN and DPEPO) of interest for OLED application, unambiguously demonstrating that the matrix readjusts for at least 15 ns after the dye photoexcitation.

15.
J Phys Chem B ; 127(26): 5905-5923, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352509

RESUMO

We prepared a series of phenothiazine (PTZ)-anthraquinone (AQ) electron donor-acceptor dyads to study the relationship between molecular structures and the possibility of charge transfer (CT) and intersystem crossing (ISC). As compared to the previously reported PTZ-AQ dyad with a direct connection of two units via a C-N single bond, the PTZ and AQ units are connected via a p-phenylene or p-biphenylene linker. Conformation restriction is imposed by attaching ortho-methyl groups on the phenylene linker. UV-vis absorption spectra indicate electronic coupling between the PTZ and AQ units in the dyads without conformation restriction. Different from the previously reported PTZ-AQ, thermally activated delayed fluorescence (TADF) is observed for the dyads containing one phenylene linker (PTZ-Ph-AQ and PTZ-PhMe-AQ). The prompt fluorescence lifetime in cyclohexane is exceptionally long (τPF = 62.0 ns, population ratio: 99.2%) and 245.0 ns (93.5%) for PTZ-Ph-AQ and PTZ-PhMe-AQ, respectively (normally τPF <20 ns); the delayed fluorescence lifetimes for these two dyads were determined as τDF = 2.4 µs (6.5%) and 7.6 µs (0.8%), respectively. For the dyad containing a biphenylene linker (PTZ-Ph2Me-AQ), no TADF was observed. Charge-separated (CS) states were observed for PTZ-Ph-AQ and PTZ-PhMe-AQ, and the lifetimes were determined as 7.0 and 1.3 µs, respectively, indicating the triplet spin multiplicity of the CS state. The 3CS state lifetimes are shortened to 100 ns and 440 ns for the two dyads, respectively, in the polar solvent acetonitrile. For dyads with a longer linker, i.e., PTZ-Ph2Me-AQ, the CS state lifetime is not sensitive to solvent polarity (τCS = 1.8 and 1.3 µs in cyclohexane and acetonitrile, respectively). In reference dyads, where the PTZ unit is oxidized to sulfoxide, no CT absorption band and TADF were observed, which is attributed to the increased CS state energy (>3 eV) becoming higher than that of the AQ triplet (3AQ*) state (ca. 2.7 eV). These experimental evidence show that the presence of 1CS, 3CS, and 3LE (LE: locally excited) states sharing similar energy is essential for the occurrence of TADF. Population of the long-lived 3CS state (with a lifetime of a few µs) does not produce by itself TADF, because the ISC process of 1CS→3CS is nonsufficient. Femtosecond transient absorption spectra show that charge separation (CS) occurs readily (<5 ps) for most dyads, even in nonpolar solvents. Nanosecond pulsed laser-excited time-resolved electron paramagnetic resonance (TREPR) spectra show that either a spin correlated radical pair (SCRP) is formed, with the electron exchange energy 2J = +2.14 mT, or radical pairs with stronger interaction, |2J| > 6.57 mT. These studies are useful for in-depth understanding of the CS and ISC in compact electron donor-acceptor dyads and for design of efficient TADF emitters.

16.
ACS Appl Energy Mater ; 6(9): 4862-4880, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37181248

RESUMO

Luminescent solar concentrators (LSCs) are a class of optical devices able to harvest, downshift, and concentrate sunlight, thanks to the presence of emitting materials embedded in a polymer matrix. Use of LSCs in combination with silicon-based photovoltaic (PV) devices has been proposed as a viable strategy to enhance their ability to harvest diffuse light and facilitate their integration in the built environment. LSC performances can be improved by employing organic fluorophores with strong light absorption in the center of the solar spectrum and intense, red-shifted emission. In this work, we present the design, synthesis, characterization, and application in LSCs of a series of orange/red organic emitters featuring a benzo[1,2-b:4,5-b']dithiophene 1,1,5,5-tetraoxide central core as an acceptor (A) unit. The latter was connected to different donor (D) and acceptor (A') moieties by means of Pd-catalyzed direct arylation reactions, yielding compounds with either symmetric (D-A-D) or non-symmetric (D-A-A') structures. We found that upon light absorption, the compounds attained excited states with a strong intramolecular charge-transfer character, whose evolution was greatly influenced by the nature of the substituents. In general, symmetric structures showed better photophysical properties for the application in LSCs than their non-symmetric counterparts, and using a donor group of moderate strength such as triphenylamine was found preferable. The best LSC built with these compounds presented photonic (external quantum efficiency of 8.4 ± 0.1%) and PV (device efficiency of 0.94 ± 0.06%) performances close to the state-of-the-art, coupled with a sufficient stability in accelerated aging tests.

17.
Chem Sci ; 14(19): 5014-5027, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37206394

RESUMO

To explore the relationship between the twisted π-conjugation framework of aromatic chromophores and the efficacy of intersystem crossing (ISC), we have studied a N,N,O,O-boron-chelated Bodipy derivative possessing a severely distorted molecular structure. Surprisingly, this chromophore is highly fluorescent, showing inefficient ISC (singlet oxygen quantum yield, ΦΔ = 12%). These features differ from those of helical aromatic hydrocarbons, where the twisted framework promotes ISC. We attribute the inefficient ISC to a large singlet-triplet energy gap (ΔES1/T1 = 0.61 eV). This postulate is tested by critical examination of a distorted Bodipy having an anthryl unit at the meso-position, for which ΦΔ is increased to 40%. The improved ISC yield is rationalized by the presence of a T2 state, localized on the anthryl unit, with energy close to that of the S1 state. The electron spin polarization phase pattern of the triplet state is (e, e, e, a, a, a), with the Tz sublevel of the T1 state overpopulated. The small zero-field splitting D parameter (-1470 MHz) indicates that the electron spin density is delocalized over the twisted framework. It is concluded that twisting of π-conjugation framework does not necessarily induce ISC, but S1/Tn energy matching may be a generic feature for increasing ISC for a new-generation of heavy atom-free triplet photosensitizers.

18.
Chemistry ; 29(43): e202301125, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37198744

RESUMO

In order to obtain long-lived charge separated (CS) states in electron donor-acceptor dyads, herein we prepared a series of anthraquinone (AQ)-phenothiazine (PTZ) dyads, with adamantane as the linker. UV-vis absorption spectra show negligible electronic interaction between the AQ and PTZ units at ground state, yet charge transfer (CT) emission bands were observed. Nanosecond transient absorption shows that the 3 AQ state is populated upon photoexcitation for AQ-PTZ in cyclohexane (CHX), but in acetonitrile (ACN) a 3 CS state is formed. Similar results were observed for AQ-PTZ-M. The 3 CS state lifetimes were determined as 0.52 µs and 0.49 µs, respectively. Upon oxidation of the PTZ unit, the 3 AQ state was observed in both polar and non-polar solvents. For AQ-PTZ, femtosecond transient absorption spectra show fast formation of the 3 AQ state in all solvents, with no charge separation in CHX, while formation of the 3 CS state takes 106 ps in ACN. For AQ-PTZ-M, a 3 CS state is formed in CHX within 241 ps. Time-resolved electron paramagnetic resonance (TREPR) spectra show that a radical ion pair with electron exchange energy of |2 J|≥5.68 mT was observed for AQ-PTZ and AQ-PTZ-M, whereas in the dyads with the PTZ unit oxidized, only the 3 AQ state was observed.

19.
J Phys Chem Lett ; 13(37): 8740-8748, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36098552

RESUMO

Three anthracene (An)-naphthalenediimide (NDI) compact electron donor-acceptor dyads were prepared. Femtosecond transient absorption (fs-TA) spectra show fast charge separation (ca. 0.9-1.7 ps) and relatively slow charge recombination (ca. 8-565 ps) upon photoexcitation; moreover, the 3An state was observed for 9-An-NDI, whereas the final state is 3NDI for both 9-An-Ph-NDI and 2-An-Ph-NDI, which have an intervening phenyl linker between the An and NDI units. Nanosecond transient absorption (ns-TA) spectra indicate that the lowest triplet state of all the dyads is 3An, with triplet lifetimes of 139-354 µs. An unusually slow intramolecular triplet-triplet energy transfer (TTET) was observed for 9-An-Ph-NDI and 2-An-Ph-NDI (32-85 ns). Time-resolved electron paramagnetic resonance (TREPR) spectroscopy confirms that the intersystem crossing (ISC) mechanism is spin orbit charge transfer ISC (SOCT-ISC) for all the dyads; for 9-An-NDI, only the 3An state was observed, while for the other two dyads, both 3NDI and 3An states were observed, with their relative population changing with increasing delay time, which supports TTET.

20.
J Phys Chem B ; 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649261

RESUMO

Naphthalimide (NI) homo- and hetero-dimers adopting orthogonal geometry were prepared to study photo-induced symmetry-breaking charge transfer (SBCT) and charge recombination (CR)-induced intersystem crossing (ISC). The two moieties in the dimer are connected either at the 3-C or 4-C position of the NI unit. The photophysical properties of the dimers were studied with steady-state and transient absorption spectroscopic methods. Significant CT only occurs for the hetero-dimer, in which one NI unit has a 4-amino substituent and the other NI unit is without it. The CR-induced ISC is most efficient for this dimer (singlet oxygen quantum yield ΦΔ = 50.3%). For the homo-dimer, in which both NI units did not present amino substitution, SBCT was not observed. Based on the electrochemical studies, we propose that the absence of SBCT for the homo-dimer is attributed to its high oxidation potential and low reduction potential. Femtosecond transient absorption (fs TA) spectra show that there is no charge separation (CS) for the homo-dimer. Nanosecond transient absorption spectroscopy indicate the formation of a triplet state with electron delocalization for the homo dimer, with a lifetime of 72.0 µs, while for the hetero dimer a triplet state with an intrinsic lifetime of 206.4 µs is observed. CS (11.6 ps) and slow CR-induced ISC (>1.5 ns) were observed for the hetero-dimer. Time-resolved electron paramagnetic resonance spectra give the zero-field splitting parameters (|D| = 1894 MHz and |E| = 111 MHz) and electron spin polarization patterns (e, e, e, a, a, a) for the triplet state of the hetero-dimer, inferring that the triplet state of the hetero-dimer is confined on the amino-substituted NI moiety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA