Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Appl Polym ; 1(1): 19-29, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38013908

RESUMO

Interactive materials are an emerging class of systems that can offer control over response and adaptivity in polymer structures towards the meso- and macroscale. Here, we use enzyme regulated cleavage of peptide crosslinkers in polymer hydrogels to release a cytotoxic therapeutic nanoparticle with an adaptable mechanism. Hydrogel microplates were formed through polyethylene glycol/peptide photoinitiated thiol-ene chemistry in a soft-lithography process to give square plates of 20 by 20 µm with a height of 10 µm. The peptide was chosen to be degradable in the presence of matrix metalloproteinase 2/9 (MMP-2/9). The hydrogel material's mechanical properties, swelling, and protease degradation were characterised. The microfabricated hydrogels were loaded with docetaxel (DTXL) containing poly(dl-lactide-co-glycolide) (PLGA) nanoparticles, and characterised for enzyme responsivity, and toxicity to MMP-2/9 overexpressing brain cancer cell line U87-MG. A 5-fold decrease in EC50 was seen compared to free DTXL, and a 20-fold decrease was seen for the MMP responsive microplates versus a non-degradable control microplate. Potential applications of this system in post-resection glioblastoma treatment are envisioned.

2.
Pharmacol Res ; 188: 106639, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586642

RESUMO

Neuroblastoma is a biologically heterogeneous extracranial tumor, derived from the sympathetic nervous system, that affects most often the pediatric population. Therapeutic strategies relying on aggressive chemotherapy, surgery, radiotherapy, and immunotherapy have a negative outcome in advanced or recurrent disease. Here, spherical polymeric nanomedicines (SPN) are engineered to co-deliver a potent combination therapy, including the cytotoxic docetaxel (DTXL) and the natural wide-spectrum anti-inflammatory curcumin (CURC). Using an oil-in-water emulsion/solvent evaporation technique, four SPN configurations were engineered depending on the therapeutic payload and characterized for their physico-chemical and pharmacological properties. All SPN configurations presented a hydrodynamic diameter of ∼ 185 nm with a narrow size distribution. A biphasic release profile was observed for all the configurations, with almost 90 % of the total drug mass released within the first 24 h. SPN cytotoxic potential was assessed on a panel of human neuroblastoma cells, returning IC50 values in the order of 1 nM at 72 h and documenting a strong synergism between CURC and DTXL. Therapeutic efficacy was tested in a clinically relevant orthotopic model of neuroblastoma, following the injection of SH-SY5Y-Luc+ cells in the left adrenal gland of athymic mice. Although ∼ 2 % of the injected SPN per mass tissue reached the tumor, the overall survival of mice treated with CURC/DTXL-SPN was extended by 50 % and 25 % as compared to the untreated control and the monotherapies, respectively. In conclusion, these results demonstrate that the therapeutic potential of the DTXL/CURC combination can be fully exploited only by reformulating these two compounds into systemically injectable nanoparticles.


Assuntos
Antineoplásicos , Curcumina , Nanopartículas , Neuroblastoma , Criança , Humanos , Camundongos , Animais , Docetaxel/farmacologia , Neuroblastoma/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/química , Polímeros/química , Linhagem Celular Tumoral
3.
Int J Pharm ; 631: 122479, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36509224

RESUMO

After two decades of research in the field of nanomedicine, nanoscale delivery systems for biologicals are becoming clinically relevant tools. Microfluidic-based fabrication processes are replacing conventional techniques based on precipitation, emulsion, and homogenization. Here, the focus is on solid lipid nanoparticles (SLNs) for the encapsulation and delivery of lysozyme (LZ) as a model biologic. A thorough analysis was conducted to compare conventional versus microfluidic-based production techniques, using a 3D-printed device. The efficiency of the microfluidic technique in producing LZ-loaded SLNs (LZ SLNs) was demonstrated: LZ SLNs were found to have a lower size (158.05 ± 4.86 nm vs 180.21 ± 7.46 nm) and higher encapsulation efficacy (70.15 ± 1.65 % vs 53.58 ± 1.13 %) as compared to particles obtained with conventional methods. Cryo-EM studies highlighted a peculiar turtle-like structure on the surface of LZ SLNs. In vitro studies demonstrated that LZ SLNs were suitable to achieve a sustained release over time (7 days). Enzymatic activity of LZ entrapped into SLNs was challenged on Micrococcus lysodeikticus cultures, confirming the stability and potency of the biologic. This systematic analysis demonstrates that microfluidic production of SLNs can be efficiently used for encapsulation and delivery of complex biological molecules.


Assuntos
Produtos Biológicos , Nanopartículas , Portadores de Fármacos/química , Lipídeos/química , Microfluídica , Muramidase , Nanopartículas/química , Tamanho da Partícula
4.
Drug Deliv Transl Res ; 13(2): 689-701, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36109442

RESUMO

Posttraumatic osteoarthritis (PTOA) is mostly treated via corticosteroid administration, and total joint arthroplasty continues to be the sole effective intervention in severe conditions. To assess the therapeutic potential of CCR2 targeting in PTOA, we used biodegradable microplates (µPLs) to achieve a slow and sustained intraarticular release of the CCR2 inhibitor RS504393 into injured knees and followed joint damage during disease progression. RS504393-loaded µPLs (RS-µPLs) were fabricated via a template-replica molding technique. A mixture of poly(lactic-co-glycolic acid) (PLGA) and RS504393 was deposited into 20 × 10 µm (length × height) wells in a polyvinyl alcohol (PVA) square-patterned template. After physicochemical and toxicological characterizations, the RS504393 release profile from µPL was assessed in PBS buffer. C57BL/6 J male mice were subjected to destabilization of the medial meniscus (DMM)/sham surgery, and RS-µPLs (1 mg/kg) were administered intraarticularly 1 week postsurgery. Administrations were repeated at 4 and 7 weeks post-DMM. Drug free-µPLs (DF-µPLs) and saline injections were performed as controls. Mice were euthanized at 4 and 10 weeks post-DMM, corresponding to the early and severe PTOA stages, respectively. Knees were evaluated for cartilage structure score (ACS, H&E), matrix loss (safranin O score), osteophyte formation and maturation from cartilage to bone (cartilage quantification), and subchondral plate thickness. The RS-µPL architecture ensured the sustained release of CCR2 inhibitors over several weeks, with ~ 20% of RS504393 still available at 21 days. This prolonged release improved cartilage structure and reduced bone damage and synovial hyperplasia at both PTOA stages. Extracellular matrix loss was also attenuated, although with less efficacy. The results indicate that local sustained delivery is needed to optimize CCR2-targeted therapies.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Masculino , Animais , Receptores CCR2 , Camundongos Endogâmicos C57BL , Osteoartrite/tratamento farmacológico , Osso e Ossos , Modelos Animais de Doenças
6.
Artigo em Inglês | MEDLINE | ID: mdl-35253405

RESUMO

With the change in lifestyle and aging of the population, osteoarthritis (OA) is emerging as a major medical burden globally. OA is a chronic inflammatory and degenerative disease initially manifesting with joint pain and eventually leading to permanent disability. To date, there are no drugs available for the definitive treatment of osteoarthritis and most therapies have been palliative in nature by alleviating symptoms rather than curing the disease. This coupled with the vague understanding of the early symptoms and methods of diagnosis so that the disease continues as a global problem and calls for concerted research efforts. A cascade of events regulates the onset and progression of osteoarthritis starting with the production of proinflammatory cytokines, including interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α; catabolic enzymes, such as matrix metalloproteinases (MMPs)-1, -3, and -13, culminating into cartilage breakdown, loss of lubrication, pain, and inability to load the joint. Although intra-articular injections of small and macromolecules are often prescribed to alleviate symptoms, low residence times within the synovial cavity severely impair their efficacy. This review will briefly describe the factors dictating the onset and progression of the disease, present the current clinically approved methods for its treatment and diagnosis, and finally elaborate on the main challenges and opportunities for the application of nano/micromedicines in the treatment of osteoarthritis. Thus, future treatment regimens will benefit from simultaneous consideration of the mechanobiological, the inflammatory, and tissue degradation aspects of the disease. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.


Assuntos
Osteoartrite , Citocinas/metabolismo , Citocinas/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia
7.
Drug Deliv Transl Res ; 12(8): 2019-2037, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35284984

RESUMO

The storied history of controlled the release systems has evolved over time; from degradable drug-loaded sutures to monolithic zero-ordered release devices and nano-sized drug delivery formulations. Scientists have tuned the physico-chemical properties of these drug carriers to optimize their performance in biomedical/pharmaceutical applications. In particular, particle drug delivery systems at the micron size regime have been used since the 1980s. Recent advances in micro and nanofabrication techniques have enabled precise control of particle size and geometry-here we review the utility of microplates and discoidal polymeric particles for a range of pharmaceutical applications. Microplates are defined as micrometer scale polymeric local depot devices in cuboid form, while discoidal polymeric nanoconstructs are disk-shaped polymeric particles having a cross-sectional diameter in the micrometer range and a thickness in the hundreds of nanometer range. These versatile particles can be used to treat several pathologies such as cancer, inflammatory diseases and vascular diseases, by leveraging their size, shape, physical properties (e.g., stiffness), and component materials, to tune their functionality. This review highlights design and fabrication strategies for these particles, discusses their applications, and elaborates on emerging trends for their use in formulations.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Tamanho da Partícula , Polímeros/química
8.
ACS Appl Mater Interfaces ; 13(45): 53618-53629, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34751556

RESUMO

Type-1 diabetes (T1DM) is a chronic metabolic disorder resulting from the autoimmune destruction of ß cells. The current standard of care requires multiple, daily injections of insulin and accurate monitoring of blood glucose levels (BGLs); in some cases, this results in diminished patient compliance and increased risk of hypoglycemia. Herein, we engineered hierarchically structured particles comprising a poly(lactic-co-glycolic) acid (PLGA) prismatic matrix, with a 20 × 20 µm base, encapsulating 200 nm insulin granules. Five configurations of these insulin-microPlates (INS-µPLs) were realized with different heights (5, 10, and 20 µm) and PLGA contents (10, 40, and, 60 mg). After detailed physicochemical and biopharmacological characterizations, the tissue-compliant 10H INS-µPL, realized with 10 mg of PLGA, presented the most effective release profile with ∼50% of the loaded insulin delivered at 4 weeks. In diabetic mice, a single 10H INS-µPL intraperitoneal deposition reduced BGLs to that of healthy mice within 1 h post-implantation (167.4 ± 49.0 vs 140.0 ± 9.2 mg/dL, respectively) and supported normoglycemic conditions for about 2 weeks. Furthermore, following the glucose challenge, diabetic mice implanted with 10H INS-µPL successfully regained glycemic control with a significant reduction in AUC0-120min (799.9 ± 134.83 vs 2234.60 ± 82.72 mg/dL) and increased insulin levels at 7 days post-implantation (1.14 ± 0.11 vs 0.38 ± 0.02 ng/mL), as compared to untreated diabetic mice. Collectively, these results demonstrate that INS-µPLs are a promising platform for the treatment of T1DM to be further optimized with the integration of smart glucose sensors.


Assuntos
Materiais Biocompatíveis/farmacologia , Glicemia/análise , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Ácido Poliglicólico/farmacologia , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/metabolismo , Relação Dose-Resposta a Droga , Hipoglicemia/induzido quimicamente , Hipoglicemia/tratamento farmacológico , Hipoglicemia/metabolismo , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Insulina/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Ácido Poliglicólico/química , Estreptozocina
9.
Mater Horiz ; 8(10): 2726-2741, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34617542

RESUMO

Surface PEGylation, biological camouflage, shape and stiffness modulation of nanoparticles as well as liver blockade and macrophage depletion have all improved the blood longevity of nanomedicines. Yet, the mononuclear phagocytic system still recognizes, sequesters, and processes the majority of blood borne particles. Here, the natural fatty acid methyl palmitate is combined with endogenous blood components - albumin - realizing ∼200 nm stable, spherical nanoparticles (MPN) capable of inducing a transient and reversible state of dormancy into macrophages. In primary bone marrow derived monocytes (BMDM), the rate of internalization of 5 different particles, ranging in size from 200 up to 2000 nm, with spherical and discoidal shapes, and made out of lipids and polymers, was almost totally inhibited after an overnight pre-treatment with 0.5 mM MPN. Microscopy analyses revealed that MPN reversibly reduced the extension and branching complexity of the microtubule network in BMDM, thus altering membrane bulging and motility. In immunocompetent mice, a 4 h pre-treatment with MPN was sufficient to redirect 2000 nm rigid particles from the liver to the lungs realizing a lung-to-liver accumulation ratio larger than 2. Also, in mice bearing U87-MG tumor masses, a 4 h pre-treatment with MPN enhanced the therapeutic efficacy of docetaxel-loaded nanoparticles significantly inhibiting tumor growth. The natural liver sequestering function was fully recovered overnight. This data would suggest that MPN pre-treatment could transiently and reversibly inhibit non-specific particle sequestration, thus redirecting nanomedicines towards their specific target tissue while boosting their anti-cancer efficacy and imaging capacity.


Assuntos
Nanomedicina , Nanopartículas , Animais , Macrófagos , Camundongos , Palmitatos
10.
ACS Nano ; 15(9): 14475-14491, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34409835

RESUMO

Post-traumatic osteoarthritis (PTOA) associated with joint injury triggers a degenerative cycle of matrix destruction and inflammatory signaling, leading to pain and loss of function. Here, prolonged RNA interference (RNAi) of matrix metalloproteinase 13 (MMP13) is tested as a PTOA disease modifying therapy. MMP13 is upregulated in PTOA and degrades the key cartilage structural protein type II collagen. Short interfering RNA (siRNA) loaded nanoparticles (siNPs) were encapsulated in shape-defined poly(lactic-co-glycolic acid) (PLGA) based microPlates (µPLs) to formulate siNP-µPLs that maintained siNPs in the joint significantly longer than delivery of free siNPs. Treatment with siNP-µPLs against MMP13 (siMMP13-µPLs) in a mechanical load-induced mouse model of PTOA maintained potent (65-75%) MMP13 gene expression knockdown and reduced MMP13 protein production in joint tissues throughout a 28-day study. MMP13 silencing reduced PTOA articular cartilage degradation/fibrillation, meniscal deterioration, synovial hyperplasia, osteophytes, and pro-inflammatory gene expression, supporting the therapeutic potential of long-lasting siMMP13-µPL therapy for PTOA.


Assuntos
Sistemas de Liberação de Medicamentos , Articulações/lesões , Metaloproteinase 13 da Matriz/administração & dosagem , Osteoartrite , Animais , Metaloproteinase 13 da Matriz/genética , Camundongos , Nanopartículas , Osteoartrite/terapia , RNA Interferente Pequeno
11.
ACS Appl Mater Interfaces ; 13(27): 31379-31392, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34197081

RESUMO

Osteoarthritis (OA) is treated with the intra-articular injection of steroids such as dexamethasone (DEX) to provide short-term pain management. However, DEX treatment suffers from rapid joint clearance. Here, 20 × 10 µm, shape-defined poly(d,l-lactide-co-glycolide)acid microPlates (µPLs) are created and intra-articularly deposited for the sustained release of DEX. Under confined conditions, DEX release is projected to persist for several months, with only ∼20% released in the first month. In a highly rigorous murine knee overload injury model (post-traumatic osteoarthritis), a single intra-articular injection of Cy5-µPLs is detected in the cartilage surface, infrapatellar fat pad/synovium, joint capsule, and posterior joint space up to 30 days. One intra-articular injection of DEX-µPL (1 mg kg-1) decreased the expression of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, IL-6, and matrix metalloproteinase (MMP)-13 by approximately half compared to free DEX at 4 weeks post-treatment. DEX-µPL also reduced load-induced histological changes in the articular cartilage and synovial tissues relative to saline or free DEX. In sum, the µPLs provide sustained drug release along with the capability to precisely control particle geometry and mechanical properties, yielding long-lasting benefits in overload-induced OA. This work motivates further study and development of particles that provide combined pharmacological and mechanical benefits.


Assuntos
Cartilagem Articular/metabolismo , Dexametasona/química , Dexametasona/metabolismo , Portadores de Fármacos/química , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Animais , Biomarcadores/metabolismo , Preparações de Ação Retardada , Dexametasona/administração & dosagem , Dexametasona/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intra-Articulares , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Estresse Mecânico
12.
Pharmaceutics ; 13(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806703

RESUMO

Methotrexate (MTX), a compound originally used as an anticancer drug, has also found applications in a broad variety of autoimmune disorders thanks to its anti-inflammation and immunomodulatory functions. The broad application of MTX is anyway limited by its poor solubility in biological fluids, its poor bioavailability and its toxicity. In addition, encapsulating its original form in nanoformulation is very arduous due to its considerable hydrophobicity. In this work, two strategies to efficiently encapsulate MTX into liposomal particles are proposed to overcome the limitations mentioned above and to improve MTX bioavailability. MTX solubility was increased by conjugating the molecule to two different compounds: DSPE and PEG. These two compounds commonly enrich liposome formulations, and their encapsulation efficiency is very high. By using these two prodrugs (DSPE-MTX and PEG-MTX), we were able to generate liposomes comprising one or both of them and characterized their physiochemical features and their toxicity in primary macrophages. These formulations represent an initial step to the development of targeted liposomes or particles, which can be tailored for the specific application MTX is used for (cancer, autoimmune disease or others).

13.
ACS Omega ; 6(4): 2973-2989, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553916

RESUMO

Doxorubicin hydrochloride (DOX) is currently used to treat orthotropic and metastatic breast cancer. Because of its side effects, the use of DOX in cancer patients is sometimes limited; for this reason, several scientists tried designing drug delivery systems which can improve drug therapeutic efficacy and decrease its side effects. In this study, we designed, prepared, and physiochemically characterized nonionic surfactant vesicles (NSVs) which are obtained by self-assembling different combinations of hydrophilic (Tween 20) and hydrophobic (Span 20) surfactants, with cholesterol. DOX was loaded in NSVs using a passive and pH gradient remote loading procedure, which increased drug loading from ∼1 to ∼45%. NSVs were analyzed in terms of size, shape, size distribution, zeta potential, long-term stability, entrapment efficiency, and release kinetics, and nanocarriers having the best physiochemical parameters were selected for further in vitro tests. NSVs with and without DOX were stable and showed a sustained drug release up to 72 h. In vitro studies, with MCF-7 and MDA MB 468 cells, demonstrated that NSVs, containing Span 20, were better internalized in MCF-7 and MDA MB 468 cells than NSVs with Tween 20. NSVs increased the anticancer effect of DOX in MCF-7 and MDA MB 468 cells, and this effect is time and dose dependent. In vitro studies using metastatic and nonmetastatic breast cancer cells also demonstrated that NSVs, containing Span 20, had higher cytotoxicity than NSVs with Tween 20. The resulting data suggested that DOX-loaded NSVs could be a promising nanocarrier for the potential treatment of metastatic breast cancer.

14.
Transl Oncol ; 13(4): 100760, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32247264

RESUMO

Although screening has reduced mortality rates for colorectal cancer (CRC), about 20% of patients still carry metastases at diagnosis. Postsurgery chemotherapy is toxic and induces drug resistance. Promising alternative strategies rely on repurposing drugs such as aspirin (ASA) and metformin (MET). Here, tumor spheroids were generated in suspension by primary CRCs and metastatic lymph nodes from 11 patients. These spheroids presented a heterogeneous cell population including a small core of CD133+/ESA+ cancer stem cells surrounded by a thick corona of CDX2+/CK20+ CRC cells, thus maintaining the molecular hallmarks of the tumor source. Spheroids were exposed to ASA and/or MET at different doses for up to 7 days to assess cell growth, migration, and adhesion in three-dimensional assays. While ASA at 5 mM was always sufficient to mitigate cell migration, the response to MET was patient specific. Only in MET-sensitive spheroids, the 5 mM ASA/MET combination showed an effect. Interestingly, CRCs from diabetic patients daily pretreated with MET gave a very low spheroid yield due to reduced cancer cell survival. This study highlights the potential of ASA/MET treatments to modulate CRC spreading.

15.
Artigo em Inglês | MEDLINE | ID: mdl-32140459

RESUMO

Fine-tuning loading and release of therapeutic and imaging agents associated with polymeric matrices is a fundamental step in the preclinical development of novel nanomedicines. Here, 1,000 × 400 nm Discoidal Polymeric Nanoconstructs (DPNs) were realized via a top-down, template-based fabrication approach, mixing together poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol)-diacrylate (PEG-DA) chains in a single polymer paste. Two different loading strategies were tested, namely the "direct loading" and the "absorption loading." In the first case, the agent was directly mixed with the polymeric paste to realize DPNs whereas, in the second case, DPNs were first lyophilized and then rehydrated upon exposure to a concentrated aqueous solution of the agent. Under these two loading conditions, the encapsulation efficiencies and release profiles of different agents were systematically assessed. Specifically, six agents were realized by conjugating lipid chains (DSPE) or polymeric chains (PEG) to the near-infrared imaging molecule Cy5 (DSPE-Cy5 A and DSPE-Cy5 B); the chemotherapeutic molecules methotrexate (DSPE-MTX and PEG-MTX) and doxorubicin (LA-DOX and DSPE-DOX). Moderately hydrophobic compounds with low molecular weights (MW) returned encapsulation efficiencies as high as 80% for the absorption loading. In general, direct loading was associated with encapsulation efficiencies lower than 1%. The agent hydrophobicity and MW were shown to be critical also in tailoring the release profiles from DPNs. On triple-negative breast cancer cells (MDA-MB-231), absorption loaded DOX-DPNs showed cytotoxic activities comparable to free DOX but slightly delayed in time. Preliminary in vivo studies demonstrated the high stability of Cy5-DPNs. Collectively, these results demonstrate that the pharmacological properties of DPNs can be finely optimized by changing the loading strategies (direct vs. absorption) and compound attributes (hydrophobicity and molecular weight).

16.
J Control Release ; 319: 201-212, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-31899267

RESUMO

Over the years, nanoparticles, microparticles, implants of poly(D,l-lactide-co-glycolide) (PLGA) have been demonstrated for diverse biomedical applications. Yet, initial burst release and optimal modulation of the release profiles limit their clinical use. Here, shape-defined PLGA microPlates (µPLs) were realized for the sustained release of two anti-inflammatory molecules, the natural polyphenol curcumin (CURC) and the corticosteroid dexamethasone (DEX). Under the electron microscope, µPLs appeared as square prisms with an edge length of 20 µm. The top-down fabrication process allowed the authors to vary, readily and systematically, the µPL height from 5 to 10 µm and the PLGA mass from 1 to 5, 10 and 20 mg. 'Taller' particles realized with higher PLGA concentrations encapsulated more drug reaching on average values of about 150 pg/µPL, for both CURC and DEX. The µPL height and PLGA concentration had major effects on drug release, too. Under sink conditions, DEX release from tall µPLs at 1 h reduced from 50% to 10% and 2% for the 5, 10 and 20 mg PLGA configurations, respectively. Also, DEX was released more slowly from taller as compared to short µPLs. The opposite trend was observed for CURC, possibly for its lower hydrophobicity and molecular weight as compared to DEX. This was also confirmed by quantifying the free energy of translocation for the two drugs via molecular dynamics simulations. Finally, the anti-inflammatory activity of µPLs was tested in vitro on LPS-stimulated rat monocytes and in vivo on a murine model of UVB-induced skin burns. Both in vitro and in vivo, the expression of pro-inflammatory cytokines (IL-6, IL-1ß, and TNF-α) was significantly reduced by the application of µPLs as compared to the free compounds. In vivo, one single topical deposition of CURC-µPLs outperformed multiple, free CURC applications. This work demonstrates that geometry and polymer density can be effectively used to modulate the pharmacological performance of microparticles and mitigate the initial burst release.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Animais , Anti-Inflamatórios , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Camundongos , Tamanho da Partícula , Ratos
17.
ACS Appl Mater Interfaces ; 10(11): 9280-9289, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29481038

RESUMO

A variety of microparticles have been proposed for the sustained and localized delivery of drugs with the objective of increasing therapeutic indexes by circumventing filtering organs and biological barriers. Yet, the geometrical, mechanical, and therapeutic properties of such microparticles cannot be simultaneously and independently tailored during the fabrication process to optimize their performance. In this work, a top-down approach is employed to realize micron-sized polymeric particles, called microplates (µPLs), for the sustained release of therapeutic agents. µPLs are square hydrogel particles, with an edge length of 20 µm and a height of 5 µm, made out of poly(lactic- co-glycolic acid) (PLGA). During the synthesis process, the µPL Young's modulus can be varied from 0.6 to 5 MPa by changing the PLGA amounts from 1 to 7.5 mg, without affecting the µPL geometry while matching the properties of the surrounding tissue. Within the porous µPL matrix, different classes of therapeutic payloads can be incorporated including molecular agents, such as anti-inflammatory dexamethasone (DEX), and nanoparticles containing imaging and therapeutic molecules themselves, thus originating a truly hierarchical platform. As a proof of principle, µPLs are loaded with free DEX and 200 nm spherical polymeric nanoparticles, carrying DEX molecules (DEX-SPNs). Electron and fluorescent confocal microscopy analyses document the uniform distribution and stability of molecular and nanoagents within the µPL matrix. This multiscale, hierarchical microparticle releases DEX for at least 10 days. The inclusion of DEX-SPNs serves to minimize the initial burst release and modulate the diffusion of DEX molecules out of the µPL matrix. The biopharmacological and therapeutic properties together with the fine tuning of geometry and mechanical stiffness make µPLs a unique polymeric depot for the potential treatment of cancer, cardiovascular, and chronic, inflammatory diseases.


Assuntos
Desenho de Fármacos , Dexametasona , Ácido Láctico , Nanopartículas , Ácido Poliglicólico , Porosidade
18.
Int J Pharm ; 528(1-2): 18-32, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28559215

RESUMO

In order to obtain nanocarriers suitable for the delivery of drugs in the treatment of cancer, pH-responsive nanovesicles capable of facilitating fusion (fusogenic nanovesicles) were synthesized and then their physicochemical characteristics were modified. These nanovesicles were made by combining polysorbates having different physicochemical features with the aim of realizing multiple-targeting nanoformulations suitable for in vitro treatment of cancer cells. Tween21 and Tween80 were self-assembled at different molar concentrations resulting in pH-responsive fusogenic nanovesicles with an average size of less than 150nm, and a narrow size distribution (polydispersity index) value of less than 0.2. Hydrophobic and hydrophilic fluorescent probes were loaded inside the nanovesicles in order to study their pH-responsiveness and fusogenic properties and it was noted that this process did not modify their physicochemical features. The pH-responsiveness and fusogenic assay demonstrated that the nanovesicles containing Tween21 at different molar ratios were pH-responsive and interacted with a synthetic model of a biological membrane supplemented with Ca2+ in the incubation medium. Fifty percent (molar ratio) of Tween21 was replaced with Tween80, since Tween80 can promote the adsorption of apolipoproteins (A-E) onto the surfaces of nanovesicles without altering their pH-responsiveness or fusogenic properties. In fact this equivalent molar concentration of Tween21 and Tween80 also maintained their degree of interaction with the apolipoproteins (A-E). Doxorubicin hydrochloride-loaded nanovesicles were synthesized and physicochemically characterized in order to obtain nanoformulations suitable for anticancer treatment. The therapeutic nanovesicles showed physicochemical properties similar to those of empty nanoformulations, and maintained pH-responsiveness, fusogenic properties and targeting versus the apolipoproteins (A-E). The doxorubicin hydrochloride was loaded into the nanovesicles using both passive and pH gradient remote loading procedures. The latter provided the nanovesicles with an entrapment efficiency percentage of over 30%, which was much higher than the 10% that was obtained using the passive loading procedure. The entrapment efficiency improved up to 60% for the nanovesicles made from the same molar concentration of Tween21 and Tween80. The anticancer activity of doxorubicin hydrochloride-loaded nanovesicles was further tested in vitro using human neuroblastoma (SH-SY5Y) cells which respond to treatment with this chemotherapeutic drug, but the nanovesicles carrying it must cross the BBB by means of specific receptors before the drug can provide a therapeutic effect in vivo. The anticancer activity of these doxorubicin hydrochloride-loaded nanovesicles was time- and dosage- dependent, and the surfactant components making up the nanoformulations was also a determining factor in the efficiency of their activity. These nanovesicles could provide innovative nanotherapeutics for potential in vitro multidrug targeting therapy.


Assuntos
Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Polissorbatos/química , Animais , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Células RAW 264.7 , Tensoativos
19.
Planta Med ; 83(5): 482-491, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27542175

RESUMO

Elastic and ultradeformable liposomes were synthesized and physicochemically characterized to make suitable topical formulations for delivering the anti-inflammatory and anticancer compound 3-(4'-geranyloxy-3'-methoxyphenyl)-2-trans-propenoic acid. The average sizes of elastic and ultradeformable liposomes are below 300 nm, while the size distribution and Z-potential are below 0.3 and - 25 mV, respectively. The presence of 3-(4'-geranyloxy-3'-methoxyphenyl)-2-trans-propenoic acid does not affect the physicochemical parameters of nanovesicles. Elastic and ultradeformable liposomes show a zero order release kinetic and are stable at room temperature for a long time with or without 3-(4'-geranyloxy-3'-methoxyphenyl)-2-trans-propenoic acid. The ultradeformable liposomes are more deformable than elastic liposomes. These differences may depend on sodium cholate derivatives making nanoformulations. The 3-(4'-geranyloxy-3'-methoxyphenyl)-2-trans-propenoic acid-loaded elastic and ultradeformable liposomes can provide innovative nanotherapeutics-based natural compounds for the potential treatment of cutanous inflammation.


Assuntos
Antineoplásicos/administração & dosagem , Diterpenos/administração & dosagem , Medicamentos de Ervas Chinesas/administração & dosagem , Propionatos/administração & dosagem , Rutaceae/química , Administração Tópica , Antineoplásicos/farmacologia , Diterpenos/farmacologia , Sistemas de Liberação de Medicamentos , Medicamentos de Ervas Chinesas/farmacocinética , Lipossomos , Propionatos/farmacologia
20.
J Enzyme Inhib Med Chem ; 31(sup3): 110-116, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27444953

RESUMO

We developed and validated an analytical method based on microextraction packed sorbent (MEPS) and high-performance liquid chromatography (HPLC) coupled to photodiode array (PDA) detector to simultaneously quantify multiple nonsteroidal anti-inflammatory drugs (NSAIDs) and fluoroquinolones (FLQs), which may provide as combination several adverse reactions in nephrology and neurology. The linearity range from LOQs (0.1 µg/mL) to 10 µg/mL, and LODs values were 0.03 µg/mL for both NSAIDs and FLQs. The validation was performed according to international guidelines and the accuracy was tested measuring the precision, intermediate precision and trueness. The drugs stability was tested under different storage conditions (+4 °C and -20 °C) and after three different cycles of freezing and thawing. The method can be a suitable tool to simultaneously detect a possible association of drugs in human biological samples and provide several potentialities for clinical applications, bioequivalence studies, pharmacodynamics and toxicodynamics of different pharmaceutical dosage forms showing NSAIDs and FLQs.


Assuntos
Anti-Inflamatórios não Esteroides/sangue , Anti-Inflamatórios não Esteroides/urina , Fluoroquinolonas/sangue , Fluoroquinolonas/urina , Microextração em Fase Líquida , Anti-Inflamatórios não Esteroides/administração & dosagem , Cromatografia Líquida de Alta Pressão , Fluoroquinolonas/administração & dosagem , Voluntários Saudáveis , Humanos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA