Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072207

RESUMO

During spermatogenesis, the Golgi apparatus serves important roles including the formation of the acrosome, which is a sperm-specific organelle essential for fertilization. We have previously demonstrated that D. melanogaster ATP-dependent Citrate Lyase (ATPCL) is required for spindle organization, cytokinesis, and fusome assembly during male meiosis, mainly due to is activity on fatty acid biosynthesis. Here, we show that depletion of DmATPCL also affects the organization of acrosome and suggest a role for this enzyme in the assembly of Golgi-derived structures during Drosophila spermatogenesis.


Assuntos
ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Drosophila/fisiologia , Complexo de Golgi/metabolismo , Meiose , Animais , Expressão Gênica , Masculino , Espermátides/citologia , Espermátides/metabolismo , Espermatogênese/genética
2.
Cells ; 9(1)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947614

RESUMO

The Drosophila melanogasterDmATPCL gene encodes for the human ATP Citrate Lyase (ACL) ortholog, a metabolic enzyme that from citrate generates glucose-derived Acetyl-CoA, which fuels central biochemical reactions such as the synthesis of fatty acids, cholesterol and acetylcholine, and the acetylation of proteins and histones. We had previously reported that, although loss of Drosophila ATPCL reduced levels of Acetyl-CoA, unlike its human counterpart, it does not affect global histone acetylation and gene expression, suggesting that its role in histone acetylation is either partially redundant in Drosophila or compensated by alternative pathways. Here, we describe that depletion of DmATPCL affects spindle organization, cytokinesis, and fusome assembly during male meiosis, revealing an unanticipated role for DmATPCL during spermatogenesis. We also show that DmATPCL mutant meiotic phenotype is in part caused by a reduction of fatty acids, but not of triglycerides or cholesterol, indicating that DmATPCL-derived Acetyl-CoA is predominantly devoted to the biosynthesis of fatty acids during spermatogenesis. Collectively, our results unveil for the first time an involvement for DmATPCL in the regulation of meiotic cell division, which is likely conserved in human cells.


Assuntos
Divisão Celular , Drosophila melanogaster/enzimologia , Complexos Multienzimáticos/metabolismo , Oxo-Ácido-Liases/metabolismo , Espermatogênese , Animais , Divisão Celular/genética , Masculino , Complexos Multienzimáticos/genética , Oxo-Ácido-Liases/genética , Espermatogênese/genética
3.
Front Physiol ; 10: 383, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019471

RESUMO

The Citrate Lyase (ACL) is the main cytosolic enzyme that converts the citrate exported from mitochondria by the SLC25A1 carrier in Acetyl Coenzyme A (acetyl-CoA) and oxaloacetate. Acetyl-CoA is a high-energy intermediate common to a large number of metabolic processes including protein acetylation reactions. This renders ACL a key regulator of histone acetylation levels and gene expression in diverse organisms including humans. We have found that depletion of ATPCL, the Drosophila ortholog of human ACL, reduced levels of Acetyl CoA but, unlike its human counterpart, does not affect global histone acetylation and gene expression. Nevertheless, reduced ATPCL levels caused evident, although moderate, mitotic chromosome breakage suggesting that this enzyme plays a partial role in chromosome stability. These defects did not increase upon X-ray irradiation, indicating that they are not dependent on an impairment of DNA repair. Interestingly, depletion of ATPCL drastically increased the frequency of chromosome breaks (CBs) associated to mutations in scheggia, which encodes the ortholog of the mitochondrial citrate carrier SLC25A1 that is also required for chromosome integrity and histone acetylation. Our results indicate that ATPCL has a dispensable role in histone acetylation and prevents massive chromosome fragmentation when citrate efflux is altered.

4.
Neurobiol Dis ; 105: 42-50, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28502804

RESUMO

SMN (Survival Motor Neuron) deficiency is the predominant cause of spinal muscular atrophy (SMA), a severe neurodegenerative disorder that can lead to progressive paralysis and death. Although SMN is required in every cell for proper RNA metabolism, the reason why its loss is especially critical in the motor system is still unclear. SMA genetic models have been employed to identify several modifiers that can ameliorate the deficits induced by SMN depletion. Here we focus on WDR79/TCAB1, a protein important for the biogenesis of several RNA species that has been shown to physically interact with SMN in human cells. We show that WDR79 depletion results in locomotion defects in both Drosophila and Caenorhabditis elegans similar to those elicited by SMN depletion. Consistent with this observation, we find that SMN overexpression rescues the WDR79 loss-of-function phenotype in flies. Most importantly, we also found that WDR79 overexpression ameliorates the locomotion defects induced by SMN depletion in both flies and worms. Our results collectively suggest that WDR79 and SMN play evolutionarily conserved cooperative functions in the nervous system and suggest that WDR79/TCAB1 may have the potential to modify SMA pathogenesis.


Assuntos
Proteínas de Drosophila/metabolismo , Locomoção/fisiologia , Transtornos dos Movimentos/etiologia , Atrofia Muscular Espinal/complicações , Proteínas de Ligação a RNA/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Fenótipo , Interferência de RNA/fisiologia , Proteínas de Ligação a RNA/genética , Proteína 1 de Sobrevivência do Neurônio Motor
5.
J Cell Physiol ; 229(6): 683-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24170430

RESUMO

Multicolor immunostaining analysis is often a desirable tool in cell biology for most researchers. Nonetheless, this is not an easy task and often not affordable by many laboratories as it might require expensive instrumentation and sophisticated analysis software. Here, we describe a simple protocol for performing sequential immunostainings on two different Drosophila specimens. Our strategy relies on an efficient and reproducible method for removal primary antibodies and/or fluorophore-conjugated secondary antibodies that does not affect antigene integrity. We show that alternation of multiple rounds of antibody incubation and removal on the same slide, followed by registration of the same DAPI-stained image, provides a simple framework for the sequential detection of several antigens in the same cell. Given that the sample fixation procedures used for Drosophila tissues are compatible with most specimen processing protocols, we can envisage that the multicolor immunostaining strategy presented here can be also adapted to different samples including mammalian tissues and/or cells.


Assuntos
Antígenos/análise , Drosophila/citologia , Imunofluorescência/métodos , Coloração e Rotulagem/métodos , Animais , Anticorpos/química , Anticorpos/imunologia , Cromatina/química , Cromatina/imunologia , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/análise , Cor , Proteínas de Drosophila/análise , Corantes Fluorescentes , Histonas/análise , Indóis , Larva/citologia , Masculino , Cromossomos Politênicos/química , Cromossomos Politênicos/ultraestrutura , Glândulas Salivares/citologia , Espermatócitos/citologia , Testículo/citologia , Enzimas de Conjugação de Ubiquitina/análise
6.
Mutat Res ; 722(1): 20-31, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21382506

RESUMO

Production of nanotechnology-based materials is increasing worldwide: it is essential to evaluate their potential toxicity. Among these nanomaterials, carbon nanotubes (CNTs) have tremendous potential in many areas of research and applications. We have investigated the cyto- and genotoxic effects of single and multi-walled CNTs (SWCNTs, MWCNTs) and carbon black (CB) on the mouse macrophage cell line RAW 264.7. Specifically we have investigated inflammatory response, release of tumor necrosis factor-α (TNF-α), intracellular reactive oxygen species (ROS) production, cell death (both necrosis and apoptosis), chromosomal aberrations and cellular ultrastructural alteration caused by CB, MWCNTs and SWCNTs. Our data confirm that both CNTs and CB are cyto and geno-toxic to RAW 264.7 mouse macrophages. CNTs exposure induced ROS release, necrosis and chromosomal aberrations but did not cause an inflammatory response. In addition CNTs induce ultrastructural damage and apoptosis. CNTs penetrate the cell membrane and individual MWCNTs are seen associated with the nuclear envelope.


Assuntos
Macrófagos/efeitos dos fármacos , Mutagênicos/toxicidade , Nanotubos de Carbono/toxicidade , Animais , Morte Celular , Linhagem Celular , Forma Celular/efeitos dos fármacos , Aberrações Cromossômicas , Dano ao DNA , Inflamação/etiologia , Macrófagos/patologia , Macrófagos/ultraestrutura , Camundongos , Microscopia Eletrônica , Necrose/etiologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA