Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(38): e2402518121, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39254997

RESUMO

The in vivo three-dimensional genomic architecture of adult mature neurons at homeostasis and after medically relevant perturbations such as axonal injury remains elusive. Here, we address this knowledge gap by mapping the three-dimensional chromatin architecture and gene expression program at homeostasis and after sciatic nerve injury in wild-type and cohesin-deficient mouse sensory dorsal root ganglia neurons via combinatorial Hi-C, promoter-capture Hi-C, CUT&Tag for H3K27ac and RNA-seq. We find that genes involved in axonal regeneration form long-range, complex chromatin loops, and that cohesin is required for the full induction of the regenerative transcriptional program. Importantly, loss of cohesin results in disruption of chromatin architecture and severely impaired nerve regeneration. Complex enhancer-promoter loops are also enriched in the human fetal cortical plate, where the axonal growth potential is highest, and are lost in mature adult neurons. Together, these data provide an original three-dimensional chromatin map of adult sensory neurons in vivo and demonstrate a role for cohesin-dependent long-range promoter interactions in nerve regeneration.


Assuntos
Axônios , Cromatina , Coesinas , Regeneração Nervosa , Regiões Promotoras Genéticas , Células Receptoras Sensoriais , Animais , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Camundongos , Regiões Promotoras Genéticas/genética , Cromatina/metabolismo , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Axônios/metabolismo , Axônios/fisiologia , Humanos , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Elementos Facilitadores Genéticos/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Gânglios Espinais/metabolismo , Gânglios Espinais/citologia , Nervo Isquiático/metabolismo
2.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895406

RESUMO

The in vivo three-dimensional genomic architecture of adult mature neurons at homeostasis and after medically relevant perturbations such as axonal injury remains elusive. Here we address this knowledge gap by mapping the three-dimensional chromatin architecture and gene expression programme at homeostasis and after sciatic nerve injury in wild-type and cohesin-deficient mouse sensory dorsal root ganglia neurons via combinatorial Hi-C and RNA-seq. We find that cohesin is required for the full induction of the regenerative transcriptional program, by organising 3D genomic domains required for the activation of regenerative genes. Importantly, loss of cohesin results in disruption of chromatin architecture at regenerative genes and severely impaired nerve regeneration. Together, these data provide an original three-dimensional chromatin map of adult sensory neurons in vivo and demonstrate a role for cohesin-dependent chromatin interactions in neuronal regeneration.

3.
FASEB J ; 38(10): e23659, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38733301

RESUMO

HDAC3 inhibition has been shown to improve memory and reduce amyloid-ß (Aß) in Alzheimer's disease (AD) models, but the underlying mechanisms are unclear. We investigated the molecular effects of HDAC3 inhibition on AD pathology, using in vitro and ex vivo models of AD, based on our finding that HDAC3 expression is increased in AD brains. For this purpose, N2a mouse neuroblastoma cells as well as organotypic brain cultures (OBCSs) of 5XFAD and wild-type mice were incubated with various concentrations of the HDAC3 selective inhibitor RGFP966 (0.1-10 µM) for 24 h. Treatment with RGFP966 or HDAC3 knockdown in N2a cells was associated with an increase on amyloid precursor protein (APP) and mRNA expressions, without alterations in Aß42 secretion. In vitro chromatin immunoprecipitation analysis revealed enriched HDAC3 binding at APP promoter regions. The increase in APP expression was also detected in OBCSs from 5XFAD mice incubated with 1 µM RGFP966, without changes in Aß. In addition, HDAC3 inhibition resulted in a reduction of activated Iba-1-positive microglia and astrocytes in 5XFAD slices, which was not observed in OBCSs from wild-type mice. mRNA sequencing analysis revealed that HDAC3 inhibition modulated neuronal regenerative pathways related to neurogenesis, differentiation, axonogenesis, and dendritic spine density in OBCSs. Our findings highlight the complexity and diversity of the effects of HDAC3 inhibition on AD models and suggest that HDAC3 may have multiple roles in the regulation of APP expression and processing, as well as in the modulation of neuroinflammatory and neuroprotective genes.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Histona Desacetilases , Animais , Camundongos , Acrilamidas , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Fenilenodiaminas/farmacologia
4.
J Clin Med ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337476

RESUMO

BACKGROUND: With promising outcomes, platelet-rich plasma (PRP) has recently been suggested as a treatment for olfactory dysfunction (OD). METHODS: Clinical studies utilizing PRP in OD caused by COVID-19, trauma, anesthetic exposure, viral infection, and chronic rhinosinusitis were included in a systematic review. RESULTS: Ten clinical studies were qualitatively analyzed. Six of these studies used the PRP for OD caused by COVID-19, one on OD after functional endoscopic sinus surgery, and three on post-infectious or post-trauma OD. The population included 531 patients, ranging in age from 15 to 63. CONCLUSION: The use of PRP may be a risk-free and efficient therapeutic option with very encouraging outcomes. Indeed, it enhances olfactory perception in patients who not only exhibit COVID-19 infection aftereffects, but also in those who have lost their sense of smell due to trauma, rhinosinusitis, rhinitis, or even surgery. To evaluate the PRP's therapeutic benefits in OD patients and to compare the efficacy of different therapeutic protocols with regard to treatment schedules, there is an urgent need for focused controlled trials.

5.
Healthcare (Basel) ; 11(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958018

RESUMO

Obstructive Sleep Apnea (OSA) is characterized by repetitive collapse of the upper airway during sleep. Drug-Induced Sleep endoscopy (DISE) is used to identify the collapse site. Among the possible sites of collapse, the epiglottis occurs more frequently than previously described. In this study, we reviewed DISE findings and classified different epiglottic collapse patterns. We found 104 patients (16.4%) with epiglottis collapse (primary 12.5% and secondary 3.9%). We described the following patterns of epiglottis collapse: Anterior-Posterior (AP) collapse with rigid component "trapdoor type" (48%); AP collapse with lax component "floppy type" (13.5%); Lateral- Lateral (LL) collapse with omega shape component "book type" (14.5%); and secondary due to lateral pharyngeal wall or tongue base collapse (24%). The identification of the epiglottic collapse pattern is crucial in decision-making when attempting to ameliorate OSA. These findings in OSA phenotyping could influence the type of treatment chosen.

6.
Cell Metab ; 35(12): 2153-2164.e4, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37951214

RESUMO

Nerve injuries cause permanent neurological disability due to limited axonal regeneration. Injury-dependent and -independent mechanisms have provided important insight into neuronal regeneration, however, common denominators underpinning regeneration remain elusive. A comparative analysis of transcriptomic datasets associated with neuronal regenerative ability revealed circadian rhythms as the most significantly enriched pathway. Subsequently, we demonstrated that sensory neurons possess an endogenous clock and that their regenerative ability displays diurnal oscillations in a murine model of sciatic nerve injury. Consistently, transcriptomic analysis showed a time-of-day-dependent enrichment for processes associated with axonal regeneration and the circadian clock. Conditional deletion experiments demonstrated that Bmal1 is required for neuronal intrinsic circadian regeneration and target re-innervation. Lastly, lithium enhanced nerve regeneration in wild-type but not in clock-deficient mice. Together, these findings demonstrate that the molecular clock fine-tunes the regenerative ability of sensory neurons and propose compounds affecting clock pathways as a novel approach to nerve repair.


Assuntos
Relógios Circadianos , Camundongos , Animais , Relógios Circadianos/genética , Ritmo Circadiano , Regeneração Nervosa/fisiologia , Células Receptoras Sensoriais , Fatores de Transcrição ARNTL/genética
7.
J Pers Med ; 13(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37763089

RESUMO

Obstructive sleep apnea (OSA) surgery is now a viable solution in selected patients and the "remodeling" palatopharyngeal surgery is the most common one. Recently, it has become less invasive with the introduction of barbed sutures (BS). An optimization of surgical techniques is represented by barbed pharyngoplasty (BP), which requires surgical precision and needs efficient and precise oropharyngeal visualization. Consequently, the lighting system is of pivotal importance in BP. The aim of this work is to describe the first experience on the use of a new lighting system, called KLAROTM in BP for OSA. We evaluated the KLARO™ system in 15 consecutives BP for OSA in comparison with conventional headlamp illumination. The visualization of palatopharyngeal muscle in the bottom of the tonsillar fossa, entry and exit needle, such as needle tip, were statistically better with KLAROTM than headlamp illumination for both the surgeon and resident (p < 0.05). No significant differences for the visualization of the posterior pharyngeal wall and uvula were reported. The KLAROTM lighting system allows a satisfied illumination of oral cavity and oropharynx in the majority of cases. We encourage the use of KLAROTM not only in BP for OSA, but in all oral and pharyngeal surgeries, including tonsillectomy and oncological surgery.

8.
J Pers Med ; 13(8)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37623502

RESUMO

We aimed to assess the feasibility of using confocal laser scanning microscopy (CLSM) for the real-time ex vivo examination of histological samples of laryngeal lesions and to evaluate the correlation between CLSM and definitive histological results. This preliminary study included eight consecutive patients with "suspected" laryngeal lesions who were candidates for endoscopic laryngeal surgery. The obtained samples were evaluated using CLSM and classified as "inadequate" or "adequate" (high- and low-grade dysplasia, in situ and invasive carcinoma, positive surgical margin, and inflammatory outbreaks). CLSM showed the macro image in all cases and generated a digital version. All the samples were defined as adequate during CLSM and confirmed at histopathology: low-grade dysplasia (n = 5), low- and high-grade dysplasia (n = 2), and high-grade dysplasia (n = 1). Four samples had an involved resection margin, and three samples revealed the presence of inflammatory outbreaks. CLSM can be applied to larynx pathology with excellent agreement with final histological results.

9.
Medicina (Kaunas) ; 59(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241169

RESUMO

Objective: The aim of this study is to show our experience with the correct management of patients suffering from odontogenic sinusitis with oroantral communication and fistula. Methods: According to the inclusion criteria, 41 patients were enrolled in this retrospective study with a diagnosis of odontogenic sinusitis with oroantral communication and fistula; 1 patient with pre-implantological complication, 14 with implantological complications, and 26 with classical complications. Results: Two patients were treated with a fractioned combined approach, 13 patients were treated with an oral approach only, and 26 patients were treated with a combination. There was a complete resolution of the symptoms and closure of the fistula in all the patients enrolled. Conclusions: In our study, in all 41 patients, there was a surgical success. The best option is to use a multidisciplinary approach for patients suffering from odontogenic sinusitis.


Assuntos
Sinusite Maxilar , Sinusite , Humanos , Sinusite Maxilar/cirurgia , Sinusite Maxilar/complicações , Estudos Retrospectivos , Sinusite/complicações , Fístula Bucoantral/etiologia , Fístula Bucoantral/cirurgia
10.
Methods Mol Biol ; 2636: 101-144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881298

RESUMO

RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and assay for transposase-accessible chromatin sequencing (ATAC-seq) are genome-wide techniques that provide information relative to gene expression, chromatin binding sites, and chromatin accessibility, respectively. Here we describe RNA-seq, H3K9ac, H3K27ac and H3K27me3 ChIP-seq, and ATAC-seq in dorsal root ganglia (DRG) after sciatic nerve or dorsal column axotomy, to characterize the transcriptional and epigenetic signatures of DRG upon regenerative vs non-regenerative axonal lesion.


Assuntos
Epigenômica , Gânglios Espinais , Axônios , Axotomia , Cromatina
11.
Antibiotics (Basel) ; 12(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36830300

RESUMO

Odontogenic sinusitis (ODS) refers to the maxillary sinus infection, which is secondary to either adjacent infectious dental pathologies or procedures. The aim of this retrospective study is to report the experiences of the department of integrated therapies in otolaryngology (Campus Bio-Medico Foundation, Rome, Italy) in classifying and treating patients that are affected by odontogenic sinusitis derived from "classic complications". A total of 68 patients responding to the criteria and to the definition as a classical odontogenic complication were included. The surgical therapy consisted of a combined oral and nasal simultaneous approach for 28 patients (43%), a combined non-simultaneous approach for 4 patients (6%), a nasal only approach for 14 patients (21%), and an oral only approach for 20 patients (30%). All the patients presented a complete resolution of the symptoms. The choice of performing a nasal, oral, or combined approach is based on the presence of anatomical elements that facilitate sinusitis and reinfection occurrence, such as deviated nasal septum, concha bullosa, or obstructed osteo-meatal complex. The correct use of validated classification, the pre-operative CT scan, a multidisciplinary approach, and an appropriate presurgical examination are the necessary elements to obtain a good success rate.

12.
PLoS Biol ; 20(9): e3001310, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36126035

RESUMO

The interruption of spinal circuitry following spinal cord injury (SCI) disrupts neural activity and is followed by a failure to mount an effective regenerative response resulting in permanent neurological disability. Functional recovery requires the enhancement of axonal and synaptic plasticity of spared as well as injured fibres, which need to sprout and/or regenerate to form new connections. Here, we have investigated whether the epigenetic stimulation of the regenerative gene expression program can overcome the current inability to promote neurological recovery in chronic SCI with severe disability. We delivered the CBP/p300 activator CSP-TTK21 or vehicle CSP weekly between week 12 and 22 following a transection model of SCI in mice housed in an enriched environment. Data analysis showed that CSP-TTK21 enhanced classical regenerative signalling in dorsal root ganglia sensory but not cortical motor neurons, stimulated motor and sensory axon growth, sprouting, and synaptic plasticity, but failed to promote neurological sensorimotor recovery. This work provides direct evidence that clinically suitable pharmacological CBP/p300 activation can promote the expression of regeneration-associated genes and axonal growth in a chronic SCI with severe neurological disability.


Assuntos
Regeneração Nervosa , Traumatismos da Medula Espinal , Animais , Axônios/metabolismo , Camundongos , Regeneração Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/metabolismo
13.
Nature ; 607(7919): 585-592, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35732737

RESUMO

The regenerative potential of mammalian peripheral nervous system neurons after injury is critically limited by their slow axonal regenerative rate1. Regenerative ability is influenced by both injury-dependent and injury-independent mechanisms2. Among the latter, environmental factors such as exercise and environmental enrichment have been shown to affect signalling pathways that promote axonal regeneration3. Several of these pathways, including modifications in gene transcription and protein synthesis, mitochondrial metabolism and the release of neurotrophins, can be activated by intermittent fasting (IF)4,5. However, whether IF influences the axonal regenerative ability remains to be investigated. Here we show that IF promotes axonal regeneration after sciatic nerve crush in mice through an unexpected mechanism that relies on the gram-positive gut microbiome and an increase in the gut bacteria-derived metabolite indole-3-propionic acid (IPA) in the serum. IPA production by Clostridium sporogenes is required for efficient axonal regeneration, and delivery of IPA after sciatic injury significantly enhances axonal regeneration, accelerating the recovery of sensory function. Mechanistically, RNA sequencing analysis from sciatic dorsal root ganglia suggested a role for neutrophil chemotaxis in the IPA-dependent regenerative phenotype, which was confirmed by inhibition of neutrophil chemotaxis. Our results demonstrate the ability of a microbiome-derived metabolite, such as IPA, to facilitate regeneration and functional recovery of sensory axons through an immune-mediated mechanism.


Assuntos
Indóis , Regeneração Nervosa , Propionatos , Cicatrização , Animais , Camundongos , Axônios/efeitos dos fármacos , Axônios/fisiologia , Quimiotaxia de Leucócito , Clostridium/metabolismo , Jejum , Gânglios Espinais/metabolismo , Microbioma Gastrointestinal , Indóis/sangue , Indóis/metabolismo , Indóis/farmacologia , Compressão Nervosa , Fatores de Crescimento Neural/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Neutrófilos/citologia , Neutrófilos/imunologia , Propionatos/sangue , Propionatos/metabolismo , Propionatos/farmacologia , Recuperação de Função Fisiológica , Nervo Isquiático/lesões , Análise de Sequência de RNA , Cicatrização/efeitos dos fármacos
14.
Science ; 376(6594): eabd5926, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549409

RESUMO

Aging is associated with increased prevalence of axonal injuries characterized by poor regeneration and disability. However, the underlying mechanisms remain unclear. In our experiments, RNA sequencing of sciatic dorsal root ganglia (DRG) revealed significant aging-dependent enrichment in T cell signaling both before and after sciatic nerve injury (SNI) in mice. Lymphotoxin activated the transcription factor NF-κB, which induced expression of the chemokine CXCL13 by neurons. This in turn recruited CXCR5+CD8+ T cells to injured DRG neurons overexpressing major histocompatibility complex class I. CD8+ T cells repressed the axonal regeneration of DRG neurons via caspase 3 activation. CXCL13 neutralization prevented CXCR5+CD8+ T cell recruitment to the DRG and reversed aging-dependent regenerative decline, thereby promoting neurological recovery after SNI. Thus, axonal regeneration can be facilitated by antagonizing cross-talk between immune cells and neurons.


Assuntos
Envelhecimento , Axônios , Linfócitos T CD8-Positivos , Gânglios Espinais , Regeneração Nervosa , Neurônios , Nervo Isquiático , Envelhecimento/metabolismo , Animais , Axônios/fisiologia , Linfócitos T CD8-Positivos/metabolismo , Gânglios Espinais/metabolismo , Camundongos , Neurônios/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia
15.
STAR Protoc ; 3(1): 101166, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35535163

RESUMO

The study of neuronal signaling ex vivo requires the identification of the proteins that are represented within the neuronal axoplasm. Here, we describe a detailed protocol to isolate the axoplasm of peripheral and central axonal branches of sciatic dorsal root ganglia neurons in mice. The axoplasm is separated by 2D gel and digestion followed by proteomics analysis with MS/MS-LC. This protocol can be applied to dissect the axoplasmic protein expression signatures before and after a sciatic nerve or a spinal cord injury. For complete details on the use and execution of this protocol, please refer to Kong et al. (2020).


Assuntos
Gânglios Espinais , Proteômica , Animais , Axônios , Gânglios Espinais/metabolismo , Camundongos , Proteínas/metabolismo , Proteômica/métodos , Nervo Isquiático , Espectrometria de Massas em Tandem
16.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054943

RESUMO

While about half of the population experience persistent pain associated with tissue damages during their lifetime, current symptom-based approaches often fail to reduce such pain to a satisfactory level. To provide better patient care, mechanism-based analgesic approaches must be developed, which necessitates a comprehensive understanding of the nociceptive mechanism leading to tissue injury-associated persistent pain. Epigenetic events leading the altered transcription in the nervous system are pivotal in the maintenance of pain in tissue injury. However, the mechanisms through which those events contribute to the persistence of pain are not fully understood. This review provides a summary and critical evaluation of two epigenetic mechanisms, DNA methylation and non-coding RNA expression, on transcriptional modulation in nociceptive pathways during the development of tissue injury-associated pain. We assess the pre-clinical data and their translational implication and evaluate the potential of controlling DNA methylation and non-coding RNA expression as novel analgesic approaches and/or biomarkers of persistent pain.


Assuntos
Dor Crônica/etiologia , Metilação de DNA , Epigênese Genética , RNA não Traduzido , Ferimentos e Lesões/complicações , Adaptação Biológica , Biomarcadores , Dor Crônica/diagnóstico , Dor Crônica/metabolismo , Dor Crônica/terapia , Ilhas de CpG , Diagnóstico Diferencial , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos
17.
Trends Pharmacol Sci ; 42(11): 897-911, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34565578

RESUMO

Effective pharmacological management of pain associated with tissue pathology is an unmet medical need. Transcriptional modifications in nociceptive pathways are pivotal for the development and the maintenance of pain associated with tissue damage. Accumulating evidence has shown the importance of the epigenetic control of transcription in nociceptive pathways via histone post-translational modifications (PTMs). Hence, histone PTMs could be targets for novel effective analgesics. Here, we discuss the current understanding of histone PTMs in the modulation of gene expression affecting nociception and pain phenotypes following tissue injury. We also provide a critical view of the translational implications of preclinical models and discuss opportunities and challenges of targeting histone PTMs to relieve pain in clinically relevant tissue injuries.


Assuntos
Histonas , Manejo da Dor , Histonas/metabolismo , Humanos , Nociceptividade , Dor/tratamento farmacológico , Processamento de Proteína Pós-Traducional
19.
Nat Commun ; 11(1): 6425, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33349630

RESUMO

Overcoming the restricted axonal regenerative ability that limits functional repair following a central nervous system injury remains a challenge. Here we report a regenerative paradigm that we call enriched conditioning, which combines environmental enrichment (EE) followed by a conditioning sciatic nerve axotomy that precedes a spinal cord injury (SCI). Enriched conditioning significantly increases the regenerative ability of dorsal root ganglia (DRG) sensory neurons compared to EE or a conditioning injury alone, propelling axon growth well beyond the spinal injury site. Mechanistically, we established that enriched conditioning relies on the unique neuronal intrinsic signaling axis PKC-STAT3-NADPH oxidase 2 (NOX2), enhancing redox signaling as shown by redox proteomics in DRG. Finally, NOX2 conditional deletion or overexpression respectively blocked or phenocopied enriched conditioning-dependent axon regeneration after SCI leading to improved functional recovery. These studies provide a paradigm that drives the regenerative ability of sensory neurons offering a potential redox-dependent regenerative model for mechanistic and therapeutic discoveries.


Assuntos
Regeneração Nervosa , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Transdução de Sinais , Traumatismos da Medula Espinal/fisiopatologia , Animais , Axônios/patologia , Axotomia , Gânglios Espinais/patologia , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/metabolismo , Crescimento Neuronal , Plasticidade Neuronal , Oxirredução , Fosforilação , Regiões Promotoras Genéticas/genética , Proteína Quinase C/metabolismo , Subunidades Proteicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Nervo Isquiático/fisiopatologia , Regulação para Cima
20.
Nat Rev Neurol ; 16(11): 645-652, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32843733

RESUMO

COVID-19 is an infectious disease caused by the coronavirus SARS-CoV-2, which was first reported in Wuhan, China, in December 2019 and has caused a global pandemic. Acute respiratory distress syndrome (ARDS) is a common feature of severe forms of COVID-19 and can lead to respiratory failure, especially in older individuals. The increasing recognition of the neurotropic potential of SARS-CoV-2 has sparked interest in the role of the nervous system in respiratory failure in people with COVID-19. However, the neuroimmune interactions in the lung in the context of ARDS are poorly understood. In this Perspectives article, we propose the concept of the neuroimmune unit as a critical determinant of lung function in the context of COVID-19, inflammatory conditions and ageing, focusing particularly on the involvement of the vagus nerve. We discuss approaches such as neurostimulation and pharmacological neuromodulation to reduce tissue inflammation with the aim of preventing respiratory failure.


Assuntos
Betacoronavirus , Infecções por Coronavirus/complicações , Síndrome da Liberação de Citocina/etiologia , Pulmão/inervação , Neuroimunomodulação/fisiologia , Pneumonia Viral/complicações , Insuficiência Respiratória/etiologia , COVID-19 , Humanos , Pulmão/imunologia , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA