Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 299, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619619

RESUMO

A novel temperate phage, named Hesat, was isolated by the incubation of a dairy strain of Staphylococcus aureus belonging to spa-type t127 with either bovine or ovine milk. Hesat represents a new species of temperate phage within the Phietavirus genus of the Azeredovirinae subfamily. Its genome has a length of 43,129 bp and a GC content of 35.11% and contains 75 predicted ORFs, some of which linked to virulence. This includes (i) a pathogenicity island (SaPln2), homologous to the type II toxin-antitoxin system PemK/MazF family toxin; (ii) a DUF3113 protein (gp30) that is putatively involved in the derepression of the global repressor Stl; and (iii) a cluster coding for a PVL. Genomic analysis of the host strain indicates Hesat is a resident prophage. Interestingly, its induction was obtained by exposing the bacterium to milk, while the conventional mitomycin C-based approach failed. The host range of phage Hesat appears to be broad, as it was able to lyse 24 out of 30 tested S. aureus isolates. Furthermore, when tested at high titer (108 PFU/ml), Hesat phage was also able to lyse a Staphylococcus muscae isolate, a coagulase-negative staphylococcal strain. KEY POINTS: • A new phage species was isolated from a Staphylococcus aureus bovine strain. • Pathogenicity island and PVL genes are encoded within phage genome. • The phage is active against most of S. aureus strains from both animal and human origins.


Assuntos
Bacteriófagos , Infecções Estafilocócicas , Humanos , Animais , Ovinos , Staphylococcus aureus/genética , Genômica , Leite
2.
Appl Environ Microbiol ; 90(3): e0190023, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38334408

RESUMO

Endosymbiosis is a widespread and important phenomenon requiring diverse model systems. Ciliates are a widespread group of protists that often form symbioses with diverse microorganisms. Endosymbioses between the ciliate Euplotes and heritable bacterial symbionts are common in nature, and four essential symbionts were described: Polynucleobacter necessarius, "Candidatus Protistobacter heckmanni," "Ca. Devosia symbiotica," and "Ca. Devosia euplotis." Among them, only the genus Polynucleobacter comprises very close free-living and symbiotic representatives, which makes it an excellent model for investigating symbiont replacements and recent symbioses. In this article, we characterized a novel endosymbiont inhabiting the cytoplasm of Euplotes octocarinatus and found that it is a close relative of the free-living bacterium Fluviibacter phosphoraccumulans (Betaproteobacteria and Rhodocyclales). We present the complete genome sequence and annotation of the symbiotic Fluviibacter. Comparative analyses indicate that the genome of symbiotic Fluviibacter is small in size and rich in pseudogenes when compared with free-living strains, which seems to fit the prediction for recently established endosymbionts undergoing genome erosion. Further comparative analysis revealed reduced metabolic capacities in symbiotic Fluviibacter, which implies that the symbiont relies on the host Euplotes for carbon sources, organic nitrogen and sulfur, and some cofactors. We also estimated substitution rates between symbiotic and free-living Fluviibacter pairs for 233 genes; the results showed that symbiotic Fluviibacter displays higher dN/dS mean value than free-living relatives, which suggested that genetic drift is the main driving force behind molecular evolution in endosymbionts. IMPORTANCE: In the long history of symbiosis research, most studies focused mainly on organelles or bacteria within multicellular hosts. The single-celled protists receive little attention despite harboring an immense diversity of symbiotic associations with bacteria and archaea. One subgroup of the ciliate Euplotes species is strictly dependent on essential symbionts for survival and has emerged as a valuable model for understanding symbiont replacements and recent symbioses. However, almost all of our knowledge about the evolution and functions of Euplotes symbioses comes from the Euplotes-Polynucleobacter system. In this article, we report a novel essential symbiont, which also has very close free-living relatives. Genome analysis indicated that it is a recently established endosymbiont undergoing genome erosion and relies on the Euplotes host for many essential molecules. Our results provide support for the notion that essential symbionts of the ciliate Euplotes evolve from free-living progenitors in the natural water environment.


Assuntos
Betaproteobacteria , Euplotes , Filogenia , Simbiose/genética , Euplotes/genética , Euplotes/microbiologia , Betaproteobacteria/genética , Bactérias/genética , Genoma Bacteriano , Genômica
3.
Data Brief ; 49: 109430, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37538957

RESUMO

Like many other organisms, ciliates communicate and interact socially via diffusible chemical signals, named pheromones, that are functionally associated with a genetic mating-type mechanism of cell self/not-self recognition. In Euplotes species, pheromones form species-specific families of small, globular, and disulfide-rich proteins folding into exclusively helical secondary structures. Each is specified by one of a series of high-multiple alleles that are inherited in Mendelian fashion with relationships of co-dominance at the so-called mat genetic locus of the cell transcriptionally inert micronuclear genome, and expressed in the transcriptionally active macronuclear genome as individual DNA molecules in which the central coding region is flanked by 5'-leader and 3'-trailer noncoding regions ending with C4A4/T4G4 telomeric repeats. In E. crassus, a cosmopolitan marine species with a long tradition in the study of ciliate mating systems and breeding patterns, oligonucleotides specific to amino acid sequences of pheromones Ec-1 and Ec-α were previously used to clone and sequence a first set of four structurally distinct macronuclear (mac) pheromone coding genes, mac-ec-α, mac-ec-1, mac-ec-2 and mac-ec-3, from two interbreeding strains, L-2D and POR-73. The use of these oligonucleotides in PCR amplifications of macronuclear DNA preparations from three other E. crassus interbreeding strains, ES10, Fava4 and MN4, has now resulted in the characterization of a second set of eight new pheromone coding genes, mac-ec-ß, mac-ec-γ, mac-ec-δ, mac-ec-ε, mac-ec-µ, mac-ec-4, mac-ec-5 and mac-ec-6. Multiple alignment between previously and newly determined pheromone-gene sequences reinforces the concept that the E. crassus pheromone-gene family includes two sub-families, which likely reflect a duplication of the micronuclear mat gene locus and represent an apomorphic trait of the E. crassus clade. Members of one sub-family (each identified with a Greek letter) show a 500-bp 5'-leader noncoding region rich in AGGA/AGGGA repetitions, and encode 56-amino acid pheromones with eight conserved Cys residues. Members of the other sub-family (each identified with an Arabic numeral) show an 800-bp 5'-leader noncoding region without AGGA/AGGGA repetitions, and encode 45-amino acid pheromones with ten conserved Cys residues.

4.
Microb Ecol ; 86(4): 3128-3132, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37433980

RESUMO

Parafrancisella adeliensis, a Francisella-like endosymbiont, was found to reside in the cytoplasm of an Antarctic strain of the bipolar ciliate species, Euplotes petzi. To inquire whether Euplotes cells collected from distant Arctic and peri-Antarctic sites host Parafrancisella bacteria, wild-type strains of the congeneric bipolar species, E. nobilii, were screened for Parafrancisella by in situ hybridization and 16S gene amplification and sequencing. Results indicate that all Euplotes strains analyzed contained endosymbiotic bacteria with 16S nucleotide sequences closely similar to the P. adeliensis 16S gene sequence. This finding suggests that Parafrancisella/Euplotes associations are not endemic to Antarctica, but are common in both the Antarctic and Arctic regions.


Assuntos
Euplotes , Francisella , Filogenia , Euplotes/genética , Euplotes/microbiologia , Citoplasma , Regiões Antárticas
5.
J Eukaryot Microbiol ; 70(2): e12945, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36039907

RESUMO

Our knowledge of ciliate endosymbiont diversity greatly expanded over the past decades due to the development of characterization methods for uncultivable bacteria. Chlamydia-like bacteria have been described as symbionts of free-living amoebae and other phylogenetically diverse eukaryotic hosts. In the present work, a systematic survey of the bacterial diversity associated with the ciliate Euplotes octocarinatus strain Zam5b-1 was performed, using metagenomic screening as well as classical full-cycle rRNA approach, and a novel chlamydial symbiont was characterized. The metagenomic screening revealed 16S rRNA gene sequences from Polynucleobacter necessarius, three previously reported accessory symbionts, and a novel chlamydia-like bacterium. Following the full-cycle rRNA approach, we obtained the full-length 16S rRNA gene sequence of this chlamydia-like bacterium and developed probes for diagnostic fluorescence in situ hybridizations. The phylogenetic analysis of the 16S rRNA gene sequences unambiguously places the new bacterium in the family Rhabdochlamydiaceae. This is the first report of chlamydia-like bacterium being found in Euplotes. Based on the obtained data, the bacterium is proposed as a new candidate genus and species: "Candidatus Euplotechlamydia quinta."


Assuntos
Chlamydia , Cilióforos , Euplotes , Filogenia , Euplotes/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Chlamydia/genética , Cilióforos/genética , Simbiose , Análise de Sequência de DNA
6.
Eur J Protistol ; 86: 125917, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36327700

RESUMO

A well-defined clade of the Euplotes phylogenetic tree is represented by marine species characterized by a single-type dargyrome and ten fronto-ventral cirri. Three of them, namely Euplotes crassus, E. minuta and E. vannus, form a complex of closely related species of large use in experimental ciliatology. Despite morphometric and genetic analyses having substantiated their taxonomic separation, ambiguities still persist in strain assignments to one or another species. In addition to objective reasons intrinsic to significant overlapping of most morphological parameters, ambiguities also result from divergences (inherited from past literature) in deciding which of the two morphotypes, E. crassus or E. vannus, is characterized by a larger or a medium cell body size (E. minuta being clearly distinct by a smaller morphotype). By analysing nuclear SSU-rRNA gene and ITS region sequences from 37 strains, previously assigned to E. crassus, E. minuta and E. vannus based on conventional taxonomic parameters, we identified and used ITS autapomorphic point mutations to design three species-specific primers. In combination with an Euplotes-generic primer, they proved to be very effective in running polymerase chain reactions that produce amplicons of species-specific size that reliably resolve ambiguities in assigning strains to E. crassus, E. minuta or E. vannus.


Assuntos
Cilióforos , Euplotes , Hypotrichida , Euplotes/genética , Filogenia , Mutação Puntual
7.
Mar Drugs ; 20(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36355005

RESUMO

Euplotin C is a sesquiterpene of marine origin endowed with significant anti-microbial and anti-tumor properties. Despite the promising functional profile, its progress as a novel drug candidate has failed so far, due to its scarce solubility and poor stability in aqueous media, such as biological fluids. Therefore, overcoming these limits is an intriguing challenge for the scientific community. In this work, we synthesized ß-cyclodextrin-based nanosponges and investigated their use as colloidal carriers for stably complex euplotin C. Results obtained proved the ability of the carrier to include the natural compound, showing remarkable values of both loading efficiency and capacity. Moreover, it also allowed us to preserve the chemical structure of the loaded compound, which was recovered unaltered once extracted from the complex. Therefore, the use of ß-cyclodextrin-based nanosponges represents a viable option to vehiculate euplotin C, thus opening up its possible use as pharmacologically active compound.


Assuntos
Ciclodextrinas , Sesquiterpenos , beta-Ciclodextrinas , Ciclodextrinas/farmacologia , Ciclodextrinas/química , beta-Ciclodextrinas/química , Sesquiterpenos/farmacologia , Solubilidade
8.
J Eukaryot Microbiol ; 69(5): e12887, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35014102

RESUMO

Ciliates are a rich source of molecules synthesized to socialize, compete ecologically, and interact with prey and predators. Their isolation from laboratory cultures is often straightforward, permitting the study of their mechanisms of action and their assessment for applied research. This review focuses on three classes of these bioactive molecules: (i) water-borne, cysteine-rich proteins that are used as signaling pheromones in self/nonself recognition phenomena; (ii) cell membrane-associated lipophilic terpenoids that are used in interspecies competitions for habitat colonization; (iii) cortical granule-associated molecules of various chemical nature that primarily serve offence/defense functions.


Assuntos
Cilióforos , Comunicação Celular , Cilióforos/metabolismo , Ecossistema , Feromônios , Transdução de Sinais
9.
Artigo em Inglês | MEDLINE | ID: mdl-33201796

RESUMO

Two new Euplotes species have been isolated from cold shallow sandy sediments of the extreme Southern Chilean coasts: Euplotes foissneri sp. nov., from a low-salinity site at Puerto Natales on the Pacific coast, and Euplotes warreni sp. nov., from a marine site at Punta Arenas on the Atlantic coast. Euplotes foissneri has a medium body size (53×36 µm in vivo), a dorsal surface marked by six prominent ridges, a double dargyrome, six dorsal and two ventrolateral kineties, a buccal field extending to about 3/4 of the body length, an adoral zone composed of 28-32 membranelles, and nine fronto-ventral, five transverse and two or three caudal cirri. The bulky, hook-, horseshoe- or 3-shaped macronucleus is associated with one sub-spherical micronucleus. The central body region hosts taxonomically unidentified endosymbiotic eubacteria. Euplotes warreni has a small body size (39×27 µm in vivo), a smooth dorsal surface marked by three deep grooves, a double dargyrome, four dorsal and two ventrolateral kineties, a buccal field extending to about 2/3 of the body length, an adoral zone composed of 23-25 adoral membranelles, and nine fronto-ventral, five transverse and three caudal cirri. The macronucleus is hook- or C-shaped and associated with one spherical micronucleus. Endosymbiotic bacteria belonging to the genus Francisella reside preferentially in the anterior cell region. Both species lack the fronto-ventral cirrus numbered 'V/2', whereby their cirrotype-9 conforms to the so-called 'pattern I', which is the basic distinctive trait of the genus Euplotopsis Borror and Hill, 1995. Phylogenetic analyses of small subunit rRNA gene sequences, however, classify E. warreni into its own early branching clade and E. foissneri into a late branching clade. This indicates a polyphyletic nature and taxonomic inconsistency of the genus Euplotopsis, which was erected to include Euplotes species with cirrotype-9 pattern I.


Assuntos
Euplotes/classificação , Sedimentos Geológicos , Filogenia , Composição de Bases , Chile , DNA de Protozoário/genética , Euplotes/isolamento & purificação , Genes de RNAr , Salinidade , Análise de Sequência de DNA
10.
Viruses ; 12(6)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570859

RESUMO

The new epidemiological scenario has so far focused on the environmental circulation of human viral pathogens. Owing to the side effects of chemical disinfectants, there is an increasing need for knowledge on the use of virucidal compounds, especially those of a natural origin. Climacostol is a molecule produced by a freshwater ciliate and it exhibits activity against bacterial and fungal pathogens. We thus also speculated that there might be an effect on viral viability, which has never been tested. To evaluate such activity, we chose human adenovirus (HAdV), which is representative of waterborne viruses. We conducted experiments using HAdV serotype 5, whose titer was determined by infecting HeLa cell cultures. HAdV5 was shown to be sensitive to climacostol at a concentration of 0.0002 mg/mL, with an approximate 3 Log10 reduction when the initial titer of HAdV5 was approximately 104 and 103 TCID50/mL. These preliminary results could be an important starting point for further research aimed at improving the characterization of climacostol activity under different experimental conditions and against various viruses, including enveloped ones (i.e., the coronavirus). The production of climacostol by a protist living in fresh water also suggests a possible application in the activated sludge of wastewater treatment plants.


Assuntos
Adenovírus Humanos/efeitos dos fármacos , Antivirais/farmacologia , Desinfetantes/farmacologia , Resorcinóis/farmacologia , Linhagem Celular , Cilióforos/metabolismo , Células HeLa , Humanos , Dados Preliminares , Esgotos/virologia , Purificação da Água/métodos
11.
PeerJ ; 8: e8977, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351785

RESUMO

Most of the microorganisms responsible for vector-borne diseases (VBD) have hematophagous arthropods as vector/reservoir. Recently, many new species of microorganisms phylogenetically related to agents of VBD were found in a variety of aquatic eukaryotic hosts; in particular, numerous new bacterial species related to the genus Rickettsia (Alphaproteobacteria, Rickettsiales) were discovered in protist ciliates and other unicellular eukaryotes. Although their pathogenicity for humans and terrestrial animals is not known, several indirect indications exist that these bacteria might act as etiological agents of possible VBD of aquatic organisms, with protists as vectors. In the present study, a novel strain of the Rickettsia-Like Organism (RLO) endosymbiont "Candidatus (Ca.) Trichorickettsia mobilis" was identified in the macronucleus of the ciliate Paramecium multimicronucleatum. We performed transfection experiments of this RLO to planarians (Dugesia japonica) per os. Indeed, the latter is a widely used model system for studying bacteria pathogenic to humans and other Metazoa. In transfection experiments, homogenized paramecia were added to food of antibiotic-treated planarians. Treated and non-treated (i.e. control) planarians were investigated at day 1, 3, and 7 after feeding for endosymbiont presence by means of PCR and ultrastructural analyses. Obtained results were fully concordant and suggest that this RLO endosymbiont can be transiently transferred from ciliates to metazoans, being detected up to day 7 in treated planarians' enterocytes. Our findings might offer insights into the potential role of ciliates or other protists as putative vectors for diseases caused by Rickettsiales or other RLOs and occurring in fish farms or in the wild.

12.
J Eukaryot Microbiol ; 67(1): 144-149, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31419839

RESUMO

The ciliate Euplotes deviates from the universal genetic code by translating UGA as cysteine and using UAA and UAG as the termination codon. Here, we cloned and sequenced the Cathepsin B gene of Euplotes octocarinatus (Eo-CTSB) which containing several in-frame stop codons throughout the coding sequence. We provide evidences, based on 3'-RACE method and Western blot, that the Eo-CTSB gene is actively expressed. Comparison of the derived amino acid sequence with the homologs in other eukaryotes revealed that UAA and UAG may code for glutamine in Eo-CTSB. These findings imply an evolutionary complexity of stop codon reassignment in eukaryotes.


Assuntos
Catepsina B/genética , Euplotes/genética , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Sequência de Bases , Catepsina B/metabolismo , Códon de Terminação , Euplotes/enzimologia , Euplotes/metabolismo , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência
13.
Microb Ecol ; 77(3): 587-596, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30187088

RESUMO

The study of the draft genome of an Antarctic marine ciliate, Euplotes petzi, revealed foreign sequences of bacterial origin belonging to the γ-proteobacterium Francisella that includes pathogenic and environmental species. TEM and FISH analyses confirmed the presence of a Francisella endocytobiont in E. petzi. This endocytobiont was isolated and found to be a new species, named F. adeliensis sp. nov.. F. adeliensis grows well at wide ranges of temperature, salinity, and carbon dioxide concentrations implying that it may colonize new organisms living in deeply diversified habitats. The F. adeliensis genome includes the igl and pdp gene sets (pdpC and pdpE excepted) of the Francisella pathogenicity island needed for intracellular growth. Consistently with an F. adeliensis ancient symbiotic lifestyle, it also contains a single insertion-sequence element. Instead, it lacks genes for the biosynthesis of essential amino acids such as cysteine, lysine, methionine, and tyrosine. In a genome-based phylogenetic tree, F. adeliensis forms a new early branching clade, basal to the evolution of pathogenic species. The correlations of this clade with the other clades raise doubts about a genuine free-living nature of the environmental Francisella species isolated from natural and man-made environments, and suggest to look at F. adeliensis as a pioneer in the Francisella colonization of eukaryotic organisms.


Assuntos
Euplotes/microbiologia , Francisella/isolamento & purificação , Regiões Antárticas , Elementos de DNA Transponíveis , Euplotes/fisiologia , Francisella/classificação , Francisella/genética , Francisella/fisiologia , Genoma Bacteriano , Filogenia , Água do Mar/microbiologia , Simbiose
14.
Mar Drugs ; 16(5)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772645

RESUMO

Cutaneous melanoma is the most serious type of skin cancer, so new cytotoxic weapons against novel targets in melanoma are of great interest. Euplotin C (EC), a cytotoxic secondary metabolite of the marine ciliate Euplotes crassus, was evaluated in the present study on human cutaneous melanoma cells to explore its anti-melanoma activity and to gain more insight into its mechanism of action. EC exerted a marked cytotoxic effect against three different human melanoma cell lines (A375, 501Mel and MeWo) with a potency about 30-fold higher than that observed in non-cancer cells (HDFa cells). A pro-apoptotic activity and a decrease in melanoma cell migration by EC were also observed. At the molecular level, the inhibition of the Erk and Akt pathways, which control many aspects of melanoma aggressiveness, was shown. EC cytotoxicity was antagonized by dantrolene, a ryanodine receptor (RyR) antagonist, in a concentration-dependent manner. A role of RyR as a direct target of EC was also suggested by molecular modelling studies. In conclusion, our data provide the first evidence of the anti-melanoma activity of EC, suggesting it may be a promising new scaffold for the development of selective activators of RyR to be used for the treatment of melanoma and other cancer types.


Assuntos
Organismos Aquáticos/metabolismo , Euplotes/metabolismo , Melanoma/tratamento farmacológico , Sesquiterpenos/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Agonistas dos Canais de Cálcio/isolamento & purificação , Agonistas dos Canais de Cálcio/farmacologia , Agonistas dos Canais de Cálcio/uso terapêutico , Linhagem Celular Tumoral , Dantroleno/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Oncogênica v-akt/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/uso terapêutico
15.
Acta Trop ; 182: 144-148, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29481808

RESUMO

Calliphora vomitoria is a myiasis-causing fly in many animal species including humans. The control of blowflies is still anchored on the use of chemicals. However, mass trapping and lure-and-kill techniques represent a promising alternative to pesticides. Visual and olfactory cues are the main stimuli routing the fly's landing behavior. Notably, color attractiveness has been barely explored in flies of medical and veterinary importance, with special reference to blowflies. In this study, we investigated the innate color preferences in C. vomitoria adults, testing binary combinations of painted targets under laboratory conditions. The identity of tested species C. vomitoria was confirmed by DNA sequencing (18S and cox1 genes). C. vomitoria flies showed a significant preference for black colored targets in all tested binary color combinations, after 5, 15, 30 and 60 min of exposure. Black targets were significantly preferred over blue, red, yellow and white ones. Spectral characteristics of all tested color combinations were quantified and the innate attraction of blowflies towards black targets was discussed in relation to their behavioral ecology. To the best of our knowledge, this is the first report on innate color preferences in the Calliphora genus. Our findings can be useful to develop new, cheap and reliable monitoring traps as well as "lure and kill" tools to control blowfly pests.


Assuntos
Dípteros/fisiologia , Instinto , Animais , Cor , Voo Animal/fisiologia , Pigmentação
16.
Acta Trop ; 177: 211-219, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28587840

RESUMO

The chewing lice (Mallophaga) are common parasites of different animals. Most of them infest terrestrial and marine birds, including pigeons, doves, swans, cormorants and penguins. Mallophaga have not been found on marine mammals but only on terrestrial ones, including livestock and pets. Their bites damage cattle, sheep, goats, horses and poultry, causing itch and scratch and arousing phthiriasis and dermatitis. Notably, Mallophaga can vector important parasites, such as the filarial heartworm Sarconema eurycerca. Livestock losses due to chewing lice are often underestimated, maybe because farmers notice the presence of the biting lice only when the infestation is too high. In this review, we examined current knowledge on the various strategies available for Mallophaga control. The effective management of their populations has been obtained through the employ of several synthetic insecticides. However, pesticide overuse led to serious concerns for human health and the environment. Natural enemies of Mallophaga are scarcely studied. Their biological control with predators and parasites has not been explored yet. However, the entomopathogenic fungus Metarhizium anisopliae has been reported as effective in vitro and in vivo experiments against Damalinia bovis infestation on cattle. Furthermore, different Bacillus thuringiensis preparations have been tested against Mallophaga, the most effective were B. thuringiensis var. kurstaki, kenyae and morrisoni. Lastly, plant-borne insecticides have been evaluated against Mallophaga. Tested products mainly contained bioactive principles from two Meliaceae, Azadirachta indica, and Carapa guianensis. High efficacy of neem-borne preparations was reported, leading to the development of several products currently marketed. Overall, our review highlighted that our knowledge about Mallophaga vector activity and control is extremely patchy. Their control still relied on the employ of chemical pesticides widely used to fight other primary pests and vectors of livestock, such as ticks, while the development of eco-friendly control tool is scarce. Behavior-based control of Mallophaga, using pheromone-based lures or even the Sterile Insect Technique (SIT) may also represent a potential route for their control, but our limited knowledge on their behavioral ecology and chemical communication strongly limit any possible approach.


Assuntos
Agentes de Controle Biológico/administração & dosagem , Inseticidas/administração & dosagem , Iscnóceros/efeitos dos fármacos , Infestações por Piolhos/prevenção & controle , Ftirápteros/efeitos dos fármacos , Animais , Bovinos , Columbidae/parasitologia , Cabras/parasitologia , Cavalos/parasitologia , Infestações por Piolhos/veterinária , Aves Domésticas/parasitologia , Ovinos/parasitologia
17.
Chem Biodivers ; 14(4)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27981801

RESUMO

A chemotaxonomic study on the marine brown alga Cystoseira schiffneri collected from the Tunisian marine coast allowed us to identify kjellmanianone (1) and a new isololiolide derivative named schiffnerilolide (2). The structure elucidation and the assignment of relative configurations of the isolated natural products were based on advanced mass spectrometric and nuclear magnetic resonance techniques. This outcome suggested a close phylogenetic relationship of C. schiffneri with brown algae belonging to genus Sargassum C. Agardh. Molecular characterization using the nuclear small subunit rRNA (SSU rRNA) gene (18S) sequence as genetic marker was made. Pigment analysis showed a significant seasonal change of carotenoids, in particular of fucoxanthin and fucoxanthinol. Also galactolipids, the main constituents of the thylakoid membranes, showed remarkable seasonal changes.


Assuntos
Phaeophyceae/química , Phaeophyceae/classificação , Carotenoides/metabolismo , Classificação , Galactolipídeos/metabolismo , Isomerismo , Estrutura Molecular , Filogenia , Estações do Ano , Tunísia
18.
PLoS One ; 11(11): e0165442, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27828996

RESUMO

Ciliates comprise a diverse and ecologically important phylum of unicellular protists. One of the most specious and best-defined genera is Euplotes, which constitutes more than 70 morphospecies, many of which have never been molecularly tested. The increasing number of described Euplotes taxa emphasizes the importance for detailed characterizations of new ones, requiring standardized morphological observations, sequencing of molecular markers and careful comparison with previous literature. Here we describe Euplotes curdsi sp. nov., distinguishable by the combination of the following features: 45-65 µm length, oval or elongated shape with both ends rounded, narrow peristome with 25-34 adoral membranelles, conspicuous paroral membrane, double-eurystomus dorsal argyrome type, 6-7 dorsolateral kineties and 10 frontoventral cirri. Three populations of the novel species have been found in brackish and marine samples in the Mediterranean and the White Sea. We provide the SSU rRNA gene sequences of these populations, and an updated phylogeny of the genus Euplotes. Using the molecular phylogenetic tree, we inferred aspects of the biogeographical history of the genus and the evolution of its most important taxonomic characters in order to provide a frame for future descriptions. Ultimately, these data reveal recurrent trends of freshwater invasion and highlight the dynamic, yet convergent, morphological evolution of Euplotes.


Assuntos
DNA de Protozoário/genética , Euplotes/genética , Filogenia , RNA Ribossômico/genética , Euplotes/classificação , Euplotes/ultraestrutura , Mar Mediterrâneo , Mar do Norte , Filogeografia , Águas Salinas , Água do Mar , Análise de Sequência de DNA
19.
Eur J Protistol ; 54: 11-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26999560

RESUMO

Human adenoviruses are responsible for a wide range of clinical infections and are present in aquatic environments, including river, seawater, drinking-water and sewage. Free-living amoebae (Acanthamoeba) in the same environments may internalize them and other microorganisms can act as a reservoir for the internalized viruses. In this study, we studied the interaction between Acanthamoeba polyphaga and Human Adenovirus type 5 (HAdV 5) to determine whether the amoeba played a role in protecting the internalized viruses from chemical disinfection. The efficacy of sodium hypochlorite disinfection against A. polyphaga and HAdV 5 either singly or in combination was assessed at three different concentrations. Individually, the amoeba were more resistant to chemical disinfection than HAdV 5 and remained alive after exposure to 5mg/l of sodium hypochlorite. In contrast, HAdV 5 lost infectivity following exposure to 2.5mg/l of sodium hypochlorite. When the amoeba and HAdV 5 were co-cultured, infectious virus was found in the cytoplasm of the amoeba at 5mg/l disinfectant concentration. These findings suggest that the A. polyphaga is providing protection for the HAdV 5.


Assuntos
Acanthamoeba/virologia , Adenovírus Humanos/fisiologia , Purificação da Água , Acanthamoeba/efeitos dos fármacos , Adenovírus Humanos/efeitos dos fármacos , Citoplasma/virologia , Desinfetantes/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Hipoclorito de Sódio/farmacologia
20.
Parasitol Res ; 114(3): 1011-21, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25563605

RESUMO

Mosquitoes (Diptera: Culicidae) represent a threat for millions of people worldwide, since they act as vectors for important pathogens, including malaria, yellow fever, dengue and West Nile. Second to malaria as the world's most widespread parasitic disease, infection by trematodes is a devastating public health problem. In this study, we proposed two essential oils from plants cultivated in Mediterranean regions as effective chemicals against mosquitoes and freshwater snails vectors of Echinostoma trematodes. Chemical composition of essential oils from Achillea millefolium (Asteraceae) and Haplophyllum tuberculatum (Rutaceae) was investigated. Acute toxicity was evaluated against larvae of the West Nile vector Culex pipiens (Diptera: Culicidae) and the invasive freshwater snail Physella acuta (Mollusca: Physidae), an important intermediate host of many parasites, including Echinostoma revolutum (Echinostomidae). Acute toxicity of essential oils was assessed also on a non-target aquatic organism, the mayfly Cloeon dipterum (Ephemeroptera: Baetidae). Achillea millefolium and H. tuberculatum essentials oils were mainly composed by oxygenated monoterpenes (59.3 and 71.0 % of the whole oil, respectively). Chrysanthenone and borneol were the two major constituents of Achillea millefolium essential oil (24.1 and 14.2 %, respectively). Major compounds of H. tuberculatum essential oil were cis-p-menth-2-en-1-ol and trans-p-menth-2-en-1-ol (22.9 and 16.1 %, respectively). In acute toxicity assays, C. pipiens LC50 was 154.190 and 175.268 ppm for Achillea millefolium and H. tuberculatum, respectively. P. acuta LC50 was 112.911 and 73.695 ppm for Achillea millefolium and H. tuberculatum, respectively, while the same values were 198.116 and 280.265 ppm for C. dipterum. Relative median potency analysis showed that both tested essential oils were more toxic to P. acuta over C. dipterum. This research adds knowledge on plant-borne chemicals toxic against invertebrates of medical importance, allowing us to propose the tested oils as effective candidates to develop newer and safer vector control tools.


Assuntos
Culex/efeitos dos fármacos , Echinostoma/efeitos dos fármacos , Ephemeroptera/efeitos dos fármacos , Gastrópodes/efeitos dos fármacos , Óleos Voláteis/toxicidade , Animais , Culicidae/efeitos dos fármacos , Gastrópodes/parasitologia , Larva/efeitos dos fármacos , Dose Letal Mediana , Região do Mediterrâneo , Monoterpenos/isolamento & purificação , Monoterpenos/toxicidade , Óleos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA