Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 11: 1397565, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725872

RESUMO

Obesity is a growing epidemic affecting millions of people worldwide and a major risk factor for a multitude of chronic diseases and premature mortality. Accumulating evidence suggests that mitochondria have a profound role in diet-induced obesity and the associated metabolic changes, but the molecular mechanisms linking mitochondria to obesity remain poorly understood. Our studies have identified a new function for mitochondrial MUL1 E3 ubiquitin ligase, a protein known to regulate mitochondrial dynamics and mitophagy, in the control of energy metabolism and lipogenesis. Genetic deletion of Mul1 in mice impedes mitophagy and presents a metabolic phenotype that is resistant to high-fat diet (HFD)-induced obesity and metabolic syndrome. Several metabolic and lipidomic pathways are perturbed in the liver and white adipose tissue (WAT) of Mul1(-/-) animals on HFD, including the one driven by Stearoyl-CoA Desaturase 1 (SCD1), a pivotal regulator of lipid metabolism and obesity. In addition, key enzymes crucial for lipogenesis and fatty acid oxidation such as ACC1, FASN, AMPK, and CPT1 are also modulated in the absence of MUL1. The concerted action of these enzymes, in the absence of MUL1, results in diminished fat storage and heightened fatty acid oxidation. Our findings underscore the significance of MUL1-mediated mitophagy in regulating lipogenesis and adiposity, particularly in the context of HFD. Consequently, our data advocate the potential of MUL1 as a therapeutic target for drug development in the treatment of obesity, insulin resistance, NAFLD, and cardiometabolic diseases.

2.
PLoS Biol ; 22(4): e3002582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683874

RESUMO

Muscarinic acetylcholine receptors are prototypical G protein-coupled receptors (GPCRs), members of a large family of 7 transmembrane receptors mediating a wide variety of extracellular signals. We show here, in cultured cells and in a murine model, that the carboxyl terminal fragment of the muscarinic M2 receptor, comprising the transmembrane regions 6 and 7 (M2tail), is expressed by virtue of an internal ribosome entry site localized in the third intracellular loop. Single-cell imaging and import in isolated yeast mitochondria reveals that M2tail, whose expression is up-regulated in cells undergoing integrated stress response, does not follow the normal route to the plasma membrane, but is almost exclusively sorted to the mitochondria inner membrane: here, it controls oxygen consumption, cell proliferation, and the formation of reactive oxygen species (ROS) by reducing oxidative phosphorylation. Crispr/Cas9 editing of the key methionine where cap-independent translation begins in human-induced pluripotent stem cells (hiPSCs), reveals the physiological role of this process in influencing cell proliferation and oxygen consumption at the endogenous level. The expression of the C-terminal domain of a GPCR, capable of regulating mitochondrial function, constitutes a hitherto unknown mechanism notably unrelated to its canonical signaling function as a GPCR at the plasma membrane. This work thus highlights a potential novel mechanism that cells may use for controlling their metabolism under variable environmental conditions, notably as a negative regulator of cell respiration.


Assuntos
Respiração Celular , Mitocôndrias , Receptor Muscarínico M2 , Mitocôndrias/metabolismo , Humanos , Animais , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M2/genética , Camundongos , Proliferação de Células , Células-Tronco Pluripotentes Induzidas/metabolismo , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Fosforilação Oxidativa , Células HEK293
3.
Cells ; 13(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38534381

RESUMO

The identification of new therapeutic targets and the development of innovative therapeutic approaches are the most important challenges for osteosarcoma treatment. In fact, despite being relatively rare, recurrence and metastatic potential, particularly to the lungs, make osteosarcoma a deadly form of cancer. In fact, although current treatments, including surgery and chemotherapy, have improved survival rates, the disease's recurrence and metastasis are still unresolved complications. Insights for analyzing the still unclear molecular mechanisms of osteosarcoma development, and for finding new therapeutic targets, may arise from the study of post-translational protein modifications. Indeed, they can influence and alter protein structure, stability and function, and cellular interactions. Among all the post-translational modifications, ubiquitin-like modifications (ubiquitination, deubiquitination, SUMOylation, and NEDDylation), as well as glycosylation, are the most important for regulating protein stability, which is frequently altered in cancers including osteosarcoma. This review summarizes the relevance of ubiquitin-like modifications and glycosylation in osteosarcoma progression, providing an overview of protein stability regulation, as well as highlighting the molecular mediators of these processes in the context of osteosarcoma and their possible targeting for much-needed novel therapy.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Glicosilação , Ubiquitina , Osteossarcoma/patologia , Neoplasias Ósseas/patologia , Estabilidade Proteica
4.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139010

RESUMO

Ubiquitination is a post-translational modification that targets specific proteins on their lysine residues. Depending on the type of ubiquitination, this modification ultimately regulates the stability or degradation of the targeted proteins. Ubiquitination is mediated by three different classes of enzymes: the E1 ubiquitin-activating enzymes, the E2 ubiquitin-conjugating enzymes and, most importantly, the E3 ubiquitin ligases. E3 ligases are responsible for the final step of the ubiquitin cascade, interacting directly with the target proteins. E3 ligases can also be involved in DNA repair, cell cycle regulation and response to stress; alteration in their levels can be involved in oncogenic transformation and cancer progression. Of all the six hundred E3 ligases of the human genome, only three of them are specific to the mitochondrion: MARCH5, RNF185 and MUL1. Their alterations (that reflect on the alteration of the mitochondria functions) can be related to cancer progression, as underlined by the increasing research performed in recent years on these three mitochondrial enzymes. This review will focus on the function and mechanisms of the mitochondrial E3 ubiquitin ligases, as well as their important targets, in cancer development and progression, also highlighting their potential use for cancer therapy.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Proteínas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Mitocôndrias/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas Mitocondriais/metabolismo
5.
Arch Biochem Biophys ; 734: 109489, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36526001

RESUMO

The therapeutic strategies for osteosarcoma involve both surgical approach and chemotherapy, but the identification of new therapeutic targets is particularly necessary in patients with local chemo-resistance, recurrence and lung metastases. The role of epigenetic regulation in osteosarcoma is largely unknown. Thus, in this study we disclosed the effects of histone deacetylase inhibitor drug PXD-101 on human osteosarcoma (OS) cell lines with different aggressiveness, including Saos-2, HOS and 143B cell lines. XTT assays revealed that treatment of Saos-2, HOS and 143B cells with PXD-101 decreased cell viability in a concentration-dependent manner. Fluorescence-activated cell sorting (FACS) analysis showed that PXD-101 inhibited proliferation and induced cell apoptosis. Wound healing assay indicated that PXD-101 inhibited migration of osteosarcoma cells. Real-Time RT-qPCR and protein analysis highlighted reduced expression of Runx2, Osterix and Mad2, probably due to Cyclin B1 inhibition by PXD-101 treatment. To our knowledge, this is the first study that characterized the anti-tumoral effect of PXD-101 in OS cells, suggesting a potential new therapeutic approach in osteosarcoma patients.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Epigênese Genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Apoptose , Neoplasias Ósseas/genética , Movimento Celular
6.
Front Cell Dev Biol ; 10: 904728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846359

RESUMO

MUL1 is a multifunctional E3 ubiquitin ligase that is involved in various pathophysiological processes including apoptosis, mitophagy, mitochondrial dynamics, and innate immune response. We uncovered a new function for MUL1 in the regulation of mitochondrial metabolism. We characterized the metabolic phenotype of MUL1(-/-) cells using metabolomic, lipidomic, gene expression profiling, metabolic flux, and mitochondrial respiration analyses. In addition, the mechanism by which MUL1 regulates metabolism was investigated, and the transcription factor HIF-1α, as well as the serine/threonine kinase Akt2, were identified as the mediators of the MUL1 function. MUL1 ligase, through K48-specific polyubiquitination, regulates both Akt2 and HIF-1α protein level, and the absence of MUL1 leads to the accumulation and activation of both substrates. We used specific chemical inhibitors and activators of HIF-1α and Akt2 proteins, as well as Akt2(-/-) cells, to investigate the individual contribution of HIF-1α and Akt2 proteins to the MUL1-specific phenotype. This study describes a new function of MUL1 in the regulation of mitochondrial metabolism and reveals how its downregulation/inactivation can affect mitochondrial respiration and cause a shift to a new metabolic and lipidomic state.

7.
Eur J Cell Biol ; 101(3): 151225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35453093

RESUMO

Metabolic alterations have been observed in many cancer types. The deregulated metabolism has thus become an emerging hallmark of the disease, where the metabolism is frequently rewired to aerobic glycolysis. This has led to the concept of "metabolic reprogramming", which has therefore been extensively studied. Over the years, it has been characterized the enhancement of aerobic glycolysis, where key mutations in some of the enzymes of the TCA cycle, and the increased glucose uptake, are used by cancer cells to achieve a "metabolic phenotype" useful to gain a proliferation advantage. Many studies have highlighted in detail the signaling pathways and the molecular mechanisms responsible for the glycolytic switch. However, glycolysis is not the only metabolic process that cancer cells rely on. Oxidative Phosphorylation (OXPHOS), gluconeogenesis or the beta-oxidation of fatty acids (FAO) may be involved in the development and progression of several tumors. In some cases, these metabolisms are even more crucial than aerobic glycolysis for the tumor survival. This review will focus on the contribution of these alterations of metabolism to the development and survival of cancers. We will also analyze the molecular mechanisms by which the balance between these metabolic processes may be regulated, as well as some of the therapeutical approaches that can derive from their study.


Assuntos
Neoplasias , Fosforilação Oxidativa , Metabolismo Energético , Ácidos Graxos/metabolismo , Glicólise , Humanos , Mitocôndrias/metabolismo , Neoplasias/patologia
8.
Biochim Biophys Acta Mol Cell Res ; 1868(4): 118963, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33444648

RESUMO

UBXN7 is a cofactor protein that provides a scaffold for both CRL3KEAP1 and CRL2VHL ubiquitin ligase complexes involved in the regulation of the NRF2 and HIF-1α protein levels respectively. NRF2 and HIF-1α are surveillance transcription factors that orchestrate the cellular response to oxidative stress (NRF2) or to hypoxia (HIF-1α). Since mitochondria are the main oxygen sensors as well as the principal producers of ROS, it can be presumed that they may be able to modulate the activity of CRL3KEAP1 and CRL2VHL complexes in response to stress. We have uncovered a new mechanism of such regulation that involves the UBXN7 cofactor protein and its regulation by mitochondrial MUL1 E3 ubiquitin ligase. High level of UBXN7 leads to HIF-1α accumulation, whereas low level of UBXN7 correlates with an increase in NRF2 protein. The reciprocal regulation of HIF-1α and NRF2 by UBXN7 is coordinated under conditions of oxidative stress or hypoxia. In addition, this molecular mechanism leads to different metabolic states; high level of UBXN7 and accumulation of HIF-1α support glycolysis, whereas inactivation of UBXN7 and activation of NRF2 confer increased OXPHOS. We describe a new mechanism by which MUL1 E3 ubiquitin ligase modulates the UBXN7 cofactor protein level and provides a reciprocal regulation of CRL3KEAP1 and CRL2VHL ubiquitin ligase complexes. Furthermore, we delineate how this regulation is reflected in NRF2 and HIF-1α accumulation and determines the metabolic state as well as the adaptive response to mitochondrial stress.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Hipóxia Celular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicólise , Células HEK293 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo , Ubiquitina-Proteína Ligases/metabolismo
9.
Sci Rep ; 10(1): 1609, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005965

RESUMO

MUL1 is a multifunctional E3 ubiquitin ligase anchored in the outer mitochondrial membrane with its RING finger domain facing the cytoplasm. MUL1 participates in various biological pathways involved in apoptosis, mitochondrial dynamics, and innate immune response. The unique topology of MUL1 enables it to "sense" mitochondrial stress in the intermembrane mitochondrial space and convey these signals through the ubiquitination of specific cytoplasmic substrates. We have identified UBXN7, the cofactor protein of the CRL2VHL ligase complex, as a specific substrate of MUL1 ligase. CRL2VHL ligase complex regulates HIF-1α protein levels under aerobic (normoxia) or anaerobic (hypoxia) conditions. Inactivation of MUL1 ligase leads to accumulation of UBXN7, with concomitant increase in HIF-1α protein levels, reduction in oxidative phosphorylation, and increased glycolysis. We describe a novel pathway that originates in the mitochondria and operates upstream of the CRL2VHL ligase complex. Furthermore, we delineate the mechanism by which the mitochondria, through MUL1 ligase, can inhibit the CRL2VHL complex leading to high HIF-1α protein levels and a metabolic shift to glycolysis under normoxic conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Glicólise/fisiologia , Células HEK293 , Células HeLa , Humanos , Dinâmica Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Ubiquitinação/fisiologia
10.
Front Cell Dev Biol ; 8: 607483, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33409282

RESUMO

Fibrosis is a chronic and progressive disorder characterized by excessive deposition of extracellular matrix, which leads to scarring and loss of function of the affected organ or tissue. Indeed, the fibrotic process affects a variety of organs and tissues, with specific molecular background. However, two common hallmarks are shared: the crucial role of the transforming growth factor-beta (TGF-ß) and the involvement of the inflammation process, that is essential for initiating the fibrotic degeneration. TGF-ß in particular but also other cytokines regulate the most common molecular mechanism at the basis of fibrosis, the Epithelial-to-Mesenchymal Transition (EMT). EMT has been extensively studied, but not yet fully explored as a possible therapeutic target for fibrosis. A deeper understanding of the crosstalk between fibrosis and EMT may represent an opportunity for the development of a broadly effective anti-fibrotic therapy. Here we report the evidences of the relationship between EMT and multi-organ fibrosis, and the possible therapeutic approaches that may be developed by exploiting this relationship.

11.
Toxicol Sci ; 169(1): 209-223, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30698772

RESUMO

Tebuconazole and Econazole are triazole and imidazole fungicides currently used worldwide. Although their reproductive toxicity in mammals has been described, their effect on male reproductive systems has been poorly investigated. As humans may be exposed to different azole compounds simultaneously, the combinational in vitro toxicity of Tebuconazole and Econazole (MIX) in mouse Sertoli TM4 cells was investigated. This study demonstrates that Tebuconazole (40 µM) and Econazole (20 µM) act synergistically in mediating decrease of mitochondrial membrane potential (ΔΨm) and changes in mitochondrial morphology. These events were associated with ATP depletion, cell cycle arrest, and sequential activation of autophagy and apoptosis. Remarkable differences on other parameters such as AMP/ATP ratio and adenylate energy charge were observed. Pharmacological inhibition of autophagy by bafilomycin A1 leads to enhanced MIX-induced apoptosis suggesting an adaptive cytoprotective function for MIX-modulated autophagy. Finally, a possible role of AMPK/ULK1 axis in mediating adaptive signalling cascades in response to energy stress was hypothesized. Consistently, ULK1 Ser 555 phosphorylation occurred in response to AMPK (Thr 172) activation. In conclusion, Tebuconazole and Econazole combination, at concentrations relevant for dermal and clinical exposure, induces a severe mitochondrial stress in SCs. Consequently, a prolonged exposure may affect the ability of the cells to re-establish homeostasis and trigger apoptosis.


Assuntos
Antifúngicos/toxicidade , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Econazol/toxicidade , Metabolismo Energético/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Mitocôndrias/efeitos dos fármacos , Células de Sertoli/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Triazóis/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células de Sertoli/metabolismo , Células de Sertoli/patologia , Transdução de Sinais
12.
PLoS One ; 13(11): e0206894, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30418986

RESUMO

OBJECTIVE: Obesity is the result of white adipose tissue accumulation where excess of food energy is stored to form triglycerides. De novo lipogenesis (DNL) is the continuous process of new fat production and is driven by the transcription factor ChREBP. During adipogenesis, white adipocytes change their morphology and the entire cell volume is occupied by one large lipid droplet. Recent studies have implicated an essential role of autophagy in adipogenic differentiation, cytoplasmic remodelling and mitochondria reorganization. The phenolic monoterpenoid carvacrol (2-methyl-5-[1-methylethyl]phenol), produced by numerous aromatic plants, has been shown to reduce lipid accumulation in murine 3T3-L1 cells during adipogenic differentiation by modulating genes associated with adipogenesis and inflammation. Therefore, the aim of this study was to evaluate whether carvacrol could affect autophagy and ChREBP expression during adipogenic differentiation. METHODS: The study was carried on by using the murine 3T3-L1 and the human WJ-MSCs (Wharton's jelly-derived mesenchymal stem cells) cell lines. Cells undergoing adipogenic differentiation were untreated or treated with carvacrol. Adipogenic differentiation was assessed by analyzing cellular lipid accumulation with Oil-Red O staining and by ultrastructural examination with TEM. Autophagy was evaluated by western immunoblotting of autophagy markers LC3B and p62/SQSTM and by ultrastructural examination of autophagic bodies. Autophagic flux was evaluated by using autophagy inhibitor cloroquine (CQ). ChREBP expression levels was assessed by both western blotting and immunoelectron microscopy and ChREBP activity by analysis of adipogenic target genes expression. RESULTS: We found that carvacrol reduced adipogenic differentiation of about 40% and 30% in, respectively, 3T3-L1 and in WJ-MSCs cells. The effect of carvacrol on adipogenic differentiation correlated with both reduction of autophagy and reduction of ChREBP expression. CONCLUSION: The results support the notion that carvacrol, through its effect on autophagy (essential for adipocyte maturation) and on ChREBP activity, could be used as a valuable adjuvant to reduce adipogenic differentiation.


Assuntos
Adipogenia/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Monoterpenos/farmacologia , Proteínas Nucleares/metabolismo , Obesidade/tratamento farmacológico , Fatores de Transcrição/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/fisiologia , Adipogenia/fisiologia , Animais , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Linhagem Celular , Cimenos , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Monoterpenos/uso terapêutico , Obesidade/etiologia , Cultura Primária de Células , Geleia de Wharton/citologia
13.
PLoS One ; 12(2): e0171093, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28207769

RESUMO

BACKGROUND: Intestinal fibrosis is characterized by abnormal production and deposition of extracellular matrix (ECM) proteins by activated myofibroblasts. The main progenitor cells of activated myofibroblasts are the fibroblasts and the epithelial cells, the latter through the epithelial-mesenchymal transition (EMT). AIM: To evaluate the action of the new PPAR-γ modulator, GED-0507-34 Levo (GED) on the expression of EMT associated and regulatory proteins such as TGF-ß, Smad3, E-cadherin, Snail, ZEB1, ß-catenin, and GSK-3ß, in a mouse model of DSS-induced intestinal fibrosis. METHODS: Chronic colitis and fibrosis were induced by oral administration of 2.5% DSS (w/v) for 6 weeks. GW9662 (GW), a selective PPAR-γ inhibitor, was also administered by intraperitoneal injection at the dose of 1 mg/kg/day combined with GED treatment. All drugs were administered at the beginning of the second cycle of DSS (day 12). 65 mice were randomly divided into five groups (H2O as controls n = 10, H2O+GED n = 10, DSS n = 15, DSS+GED n = 15, DSS+GED+GW n = 15). The colon was excised for macroscopic examination and histological and morphometric analyses. The level of expression of molecules involved in EMT and fibrosis, like TGF-ß, Smad3, E-cadherin, Snail, ZEB1, ß-catenin, GSK-3ß and PPAR-γ, was assessed by immunohistochemistry, immunofluorescence, western blot and Real Time PCR. RESULTS: GED improved the DSS-induced chronic colitis and fibrosis. GED was able to reduce the expression of the main fibrosis markers (α-SMA, collagen I-III and fibronectin) as well as the pivotal pro-fibrotic molecules IL-13, TGF-ß and Smad3, while it increased the anti-fibrotic PPAR-γ. All these GED effects were nullified by co-administration of GW with GED. Furthermore, GED was able to normalize the expression levels of E-cadherin and ß-catenin and upregulated GSK-3ß, that are all known to be involved both in EMT and fibrosis. CONCLUSIONS: The DSS-induced intestinal fibrosis was improved by the new PPAR-γ modulator GED-0507-34 Levo through the modulation of EMT mediators and pro-fibrotic molecules and through GSK-3ß induction.


Assuntos
Colite/patologia , Sulfato de Dextrana/toxicidade , Transição Epitelial-Mesenquimal , Fibrose/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , PPAR gama/metabolismo , Reto/patologia , Animais , Células Cultivadas , Colite/induzido quimicamente , Colite/metabolismo , Fibrose/induzido quimicamente , Fibrose/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética , Reto/efeitos dos fármacos , Reto/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
14.
Biochem Soc Trans ; 44(2): 589-94, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27068974

RESUMO

Truncated or shorter forms of G protein-coupled receptors (GPCRs), originating by alternative splicing, have been considered physiologically irrelevant for a rather long time. Nevertheless, it is now recognized that alternative splicing variants of GPCRs greatly increase the total number of receptor isoforms and can regulate receptor trafficking and signalling. Furthermore, dimerization of these truncated variants with other receptors concurs to expand receptor diversity. Highly truncated variants of GPCRs, typically, are retained in the endoplasmic reticulum (ER) and by heteromerization prevent the wild-type receptor to reach the plasma membrane, exerting a dominant-negative effect on its function. This can be responsible for some pathological conditions but in some other cases, it can offer protection from a disease because the expression of the receptor, that is necessary for binding an infectious agent, is attenuated. Here, we propose a possible new mechanism of creation of truncated GPCR variants through an internal ribosome entry site (IRES), a nucleotide sequence that allows cap independent translation of proteins by recruiting the ribosome in proximity of an internal initiation codon. We suggest that an IRES, situated in the third cytoplasmic loop, could be responsible for the translation of the last two transmembrane (TM) regions of the muscarinic M2receptor. IRES driven expression of this C-terminal part of the muscarinic M2receptor could represent a novel and additional mechanism of receptor regulation.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Processamento Alternativo , Animais , Humanos , Sítios Internos de Entrada Ribossomal , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética
15.
Scand J Gastroenterol ; 50(1): 53-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25523556

RESUMO

Intestinal fibrosis is a common complication of the inflammatory bowel diseases (IBDs). It becomes clinically apparent in >30% of patients with Crohn's disease (CD) and in about 5% with ulcerative colitis (UC). Fibrosis is a consequence of local chronic inflammation and is characterized by excessive extracellular matrix (ECM) protein deposition. ECM is produced by activated myofibroblasts, which are modulated by both, profibrotic and antifibrotic factors. Fibrosis depends on the balance between the production and degradation of ECM proteins. This equilibrium can be impacted by a complex and dynamic interaction between profibrotic and antifibrotic mediators. Despite the major therapeutic advances in the treatment of active inflammation in IBD over the past two decades, the incidence of intestinal strictures in CD has not significantly changed as the current anti-inflammatory therapies neither prevent nor reverse the established fibrosis and strictures. This implies that control of intestinal inflammation does not necessarily affect the associated fibrotic process. The conventional view that intestinal fibrosis is an inevitable and irreversible process in patients with IBD is also gradually changing in light of an improved understanding of the cellular and molecular mechanisms that underline the pathogenesis of fibrosis. Comprehension of the mechanisms of intestinal fibrosis is thus vital and may pave the way for the developments of antifibrotic agents and new therapeutic approaches in IBD.


Assuntos
Colite Ulcerativa/patologia , Doença de Crohn/patologia , Mucosa Intestinal/patologia , Apoptose , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Doença de Crohn/tratamento farmacológico , Doença de Crohn/metabolismo , Progressão da Doença , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibrose , Fármacos Gastrointestinais/uso terapêutico , Humanos , Mucosa Intestinal/metabolismo
16.
Blood Press ; 23(6): 330-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24786779

RESUMO

It was previously demonstrated that metabolic syndrome in humans is associated with an impairment of insulin signalling in circulating mononuclear cells. At least in animal models of hypertension, angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARB) may correct alterations of insulin signalling in the skeletal muscle. In the first study, we investigated the effects of a 3-month treatment with an ARB with additional PPARγ agonist activity, telmisartan, or with a dihydropyridine calcium channel blocker, nifedipine, on insulin signalling in patients with mild-moderate essential hypertension. Insulin signalling was evaluated in mononuclear cells by isolating them through Ficoll-Paque density gradient centrifugation and protein analysis by Western Blot. An increased expression of mTOR and of phosphorylated (active) mTOR (p-mTOR) was observed in patients treated with telmisartan, but not in those treated with nifedipine, while both treatments increased the cellular expression of glucose transporter type 4 (GLUT-4). We also investigated the effects of antihypertensive treatment with two drug combinations on insulin signalling and oxidative stress. Twenty essential hypertensive patients were included in the study and treated for 4 weeks with lercanidipine. Then they were treated for 6 months with lercanidipine + enalapril or lercanidipine + hydrochlorothiazide. An increased expression of insulin receptor, GLUT-4 and an increased activation of p70S6K1 were observed during treatment with lercanidipine + enalapril but not with lercanidipine + hydrochlorothiazide. In conclusion, telmisartan and nifedipine are both effective in improving insulin signalling in human hypertension; however, telmisartan seems to have broader effects. The combination treatment lercanidipine + enalapril seems to be more effective than lercanidipine + hydrochlorothiazide in activating insulin signalling in human lympho-monocytes.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Di-Hidropiridinas/uso terapêutico , Enalapril/uso terapêutico , Hipertensão/tratamento farmacológico , Insulina/metabolismo , Nifedipino/uso terapêutico , Adulto , Idoso , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Anti-Hipertensivos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Di-Hidropiridinas/farmacologia , Combinação de Medicamentos , Enalapril/farmacologia , Hipertensão Essencial , Feminino , Transportador de Glucose Tipo 4/metabolismo , Humanos , Hipertensão/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Nifedipino/farmacologia , Projetos Piloto , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA