Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982394

RESUMO

Mitochondrial RTG (an acronym for ReTroGrade) signaling plays a cytoprotective role under various intracellular or environmental stresses. We have previously shown its contribution to osmoadaptation and capacity to sustain mitochondrial respiration in yeast. Here, we studied the interplay between RTG2, the main positive regulator of the RTG pathway, and HAP4, encoding the catalytic subunit of the Hap2-5 complex required for the expression of many mitochondrial proteins that function in the tricarboxylic acid (TCA) cycle and electron transport, upon osmotic stress. Cell growth features, mitochondrial respiratory competence, retrograde signaling activation, and TCA cycle gene expression were comparatively evaluated in wild type and mutant cells in the presence and in the absence of salt stress. We showed that the inactivation of HAP4 improved the kinetics of osmoadaptation by eliciting both the activation of retrograde signaling and the upregulation of three TCA cycle genes: citrate synthase 1 (CIT1), aconitase 1 (ACO1), and isocitrate dehydrogenase 1 (IDH1). Interestingly, their increased expression was mostly dependent on RTG2. Impaired respiratory competence in the HAP4 mutant does not affect its faster adaptive response to stress. These findings indicate that the involvement of the RTG pathway in osmostress is fostered in a cellular context of constitutively reduced respiratory capacity. Moreover, it is evident that the RTG pathway mediates peroxisomes-mitochondria communication by modulating the metabolic function of mitochondria in osmoadaptation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclo do Ácido Cítrico/genética , Citrato (si)-Sintase/metabolismo , Transdução de Sinais , Regulação Fúngica da Expressão Gênica
2.
Int J Mol Sci ; 23(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35563451

RESUMO

Mitochondrial carriers, which transport metabolites, nucleotides, and cofactors across the mitochondrial inner membrane, have six transmembrane α-helices enclosing a translocation pore with a central substrate binding site whose access is controlled by a cytoplasmic and a matrix gate (M-gate). The salt bridges formed by the three PX[DE]XX[RK] motifs located on the odd-numbered transmembrane α-helices greatly contribute to closing the M-gate. We have measured the transport rates of cysteine mutants of the charged residue positions in the PX[DE]XX[RK] motifs of the bovine oxoglutarate carrier, the yeast GTP/GDP carrier, and the yeast NAD+ transporter, which all lack one of these charged residues. Most single substitutions, including those of the non-charged and unpaired charged residues, completely inactivated transport. Double mutations of charged pairs showed that all three carriers contain salt bridges non-essential for activity. Two double substitutions of these non-essential charge pairs exhibited higher transport rates than their corresponding single mutants, whereas swapping the charged residues in these positions did not increase activity. The results demonstrate that some of the residues in the charged residue positions of the PX[DE]XX[KR] motifs are important for reasons other than forming salt bridges, probably for playing specific roles related to the substrate interaction-mediated conformational changes leading to the M-gate opening/closing.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Membranas Mitocondriais , Proteínas Mitocondriais , Motivos de Aminoácidos/fisiologia , Animais , Bovinos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Conformação Proteica em alfa-Hélice/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Clin Endocrinol Metab ; 107(5): 1346-1356, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-34971397

RESUMO

CONTEXT: The hyperinsulinism/hyperammonemia (HI/HA) syndrome, the second-most common form of congenital hyperinsulinism, has been associated with dominant mutations in GLUD1, coding for the mitochondrial enzyme glutamate dehydrogenase, that increase enzyme activity by reducing its sensitivity to allosteric inhibition by GTP. OBJECTIVE: To identify the underlying genetic etiology in 2 siblings who presented with the biochemical features of HI/HA syndrome but did not carry pathogenic variants in GLUD1, and to determine the functional impact of the newly identified mutation. METHODS: The patients were investigated by whole exome sequencing. Yeast complementation studies and biochemical assays on the recombinant mutated protein were performed. The consequences of stable slc25a36 silencing in HeLa cells were also investigated. RESULTS: A homozygous splice site variant was identified in solute carrier family 25, member 36 (SLC25A36), encoding the pyrimidine nucleotide carrier 2 (PNC2), a mitochondrial nucleotide carrier that transports pyrimidine as well as guanine nucleotides across the inner mitochondrial membrane. The mutation leads to a 26-aa in-frame deletion in the first repeat domain of the protein, which abolishes transport activity. Furthermore, knockdown of slc25a36 expression in HeLa cells caused a marked reduction in the mitochondrial GTP content, which likely leads to a hyperactivation of glutamate dehydrogenase in our patients. CONCLUSION: We report for the first time a mutation in PNC2/SLC25A36 leading to HI/HA and provide functional evidence of the molecular mechanism responsible for this phenotype. Our findings underscore the importance of mitochondrial nucleotide metabolism and expand the role of mitochondrial transporters in insulin secretion.


Assuntos
Hiperinsulinismo Congênito , Hiperamonemia , Hiperinsulinismo , Hiperinsulinismo Congênito/genética , Glutamato Desidrogenase/genética , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Hiperamonemia/genética , Hiperinsulinismo/genética , Hipoglicemia , Mutação , Nucleotídeos
4.
Biomedicines ; 9(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34829892

RESUMO

Metabolic reprogramming is a hallmark of cancer cells required to ensure high energy needs and the maintenance of redox balance. A relevant metabolic change of cancer cell bioenergetics is the increase in glutamine metabolism. Hepatocellular carcinoma (HCC), one of the most lethal cancer and which requires the continuous development of new therapeutic strategies, shows an up-regulation of human glutamate dehydrogenase 1 (hGDH1). GDH1 function may be relevant in cancer cells (or HCC) to drive the glutamine catabolism from L-glutamate towards the synthesis of α-ketoglutarate (α-KG), thus supplying key tricarboxylic acid cycle (TCA cycle) metabolites. Here, the effects of hGLUD1 gene silencing (siGLUD1) and GDH1 inhibition were evaluated. Our results demonstrate that siGLUD1 in HepG2 cells induces a significant reduction in cell proliferation (58.8% ± 10.63%), a decrease in BCL2 expression levels, mitochondrial mass (75% ± 5.89%), mitochondrial membrane potential (30% ± 7.06%), and a significant increase in mitochondrial superoxide anion (25% ± 6.55%) compared to control/untreated cells. The inhibition strategy leads us to identify two possible inhibitors of hGDH1: quercetin and Permethylated Anigopreissin A (PAA). These findings suggest that hGDH1 could be a potential candidate target to impair the metabolic reprogramming of HCC cells.

5.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923309

RESUMO

Mitochondrial diseases result from inherited or spontaneous mutations in mitochondrial or nuclear DNA, leading to an impairment of the oxidative phosphorylation responsible for the synthesis of ATP. To date, there are no effective pharmacological therapies for these pathologies. We performed a yeast-based screening to search for therapeutic drugs to be used for treating mitochondrial diseases associated with dominant mutations in the nuclear ANT1 gene, which encodes for the mitochondrial ADP/ATP carrier. Dominant ANT1 mutations are involved in several degenerative mitochondrial pathologies characterized by the presence of multiple deletions or depletion of mitochondrial DNA in tissues of affected patients. Thanks to the presence in yeast of the AAC2 gene, orthologue of human ANT1, a yeast mutant strain carrying the M114P substitution equivalent to adPEO-associated L98P mutation was created. Five molecules were identified for their ability to suppress the defective respiratory growth phenotype of the haploid aac2M114P. Furthermore, these molecules rescued the mtDNA mutability in the heteroallelic AAC2/aac2M114P strain, which mimics the human heterozygous condition of adPEO patients. The drugs were effective in reducing mtDNA instability also in the heteroallelic strain carrying the R96H mutation equivalent to the more severe de novo dominant missense mutation R80H, suggesting a general therapeutic effect on diseases associated with dominant ANT1 mutations.


Assuntos
Translocador 1 do Nucleotídeo Adenina/genética , Ensaios de Triagem em Larga Escala/métodos , Translocases Mitocondriais de ADP e ATP/genética , Doenças Mitocondriais/tratamento farmacológico , Mutação , Preparações Farmacêuticas/administração & dosagem , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , DNA Mitocondrial/genética , Genes Dominantes , Humanos , Doenças Mitocondriais/genética , Oftalmoplegia/tratamento farmacológico , Oftalmoplegia/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
6.
J Am Soc Mass Spectrom ; 32(4): 1008-1019, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33705659

RESUMO

In the past decade, hydrophilic interaction liquid chromatography (HILIC) has emerged as an efficient alternative to reversed-phase chromatography (RPC) for the analysis of phospholipid (PL) mixtures based on mass spectrometric detection. Since the separation of PL by HILIC is chiefly based on their headgroup, the mass spectrum of each class can be obtained by spectral averaging under the corresponding HILIC band. Using experimental m/z values resulting from high mass resolution/accuracy instruments, the sum compositions of PL in a specific class can be thus inferred but partial overlapping may occur between signals related to the M + 0 isotopologue of one species and the M + 2/M + 4 isotopologues of species having one/two more C═C bonds in their chemical structures. Here, an automated workflow, named LIPIC (lipid isotopic pattern interference correction), is proposed to account for such interferences. Starting from the experimentally verified assumption that peaks in isotope patterns are Gaussian, LIPIC predicts, as a function of m/z ratio, signal intensities due to M + 2 and M + 4 isotopologues of species with one or two more C = C bonds than the target one and calculates the corrected intensity for the M + 0 isotopologue of the latter. Thanks to an iterative procedure, the suggested algorithm compensates also for slight shifts occurring between experimental and theoretical m/z ratios related to isotopologue peaks. Examples of applications to simulated and experimental mass spectra of two PL classes, i.e., phosphatidylcholines (PC) and cardiolipins (CL), emphasize the increased extent of correction at the increase of molecular masses of involved species.

7.
Nat Commun ; 11(1): 6145, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262325

RESUMO

About a thousand genes in the human genome encode for membrane transporters. Among these, several solute carrier proteins (SLCs), representing the largest group of transporters, are still orphan and lack functional characterization. We reasoned that assessing genetic interactions among SLCs may be an efficient way to obtain functional information allowing their deorphanization. Here we describe a network of strong genetic interactions indicating a contribution to mitochondrial respiration and redox metabolism for SLC25A51/MCART1, an uncharacterized member of the SLC25 family of transporters. Through a combination of metabolomics, genomics and genetics approaches, we demonstrate a role for SLC25A51 as enabler of mitochondrial import of NAD, showcasing the potential of genetic interaction-driven functional gene deorphanization.


Assuntos
Epistasia Genética , Mitocôndrias/metabolismo , NAD/metabolismo , Proteína Desacopladora 1/metabolismo , Transporte Biológico , Humanos , Mitocôndrias/genética , Oxirredução , Proteína Desacopladora 1/genética
8.
EMBO Mol Med ; 12(10): e11210, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32885605

RESUMO

Glutamine synthetase (GS) generates glutamine from glutamate and controls the release of inflammatory mediators. In macrophages, GS activity, driven by IL10, associates to the acquisition of M2-like functions. Conditional deletion of GS in macrophages inhibits metastasis by boosting the formation of anti-tumor, M1-like, tumor-associated macrophages (TAMs). From this basis, we evaluated the pharmacological potential of GS inhibitors in targeting metastasis, identifying glufosinate as a specific human GS inhibitor. Glufosinate was tested in both cultured macrophages and on mice bearing metastatic lung, skin and breast cancer. We found that glufosinate rewires macrophages toward an M1-like phenotype both at the primary tumor and metastatic site, countering immunosuppression and promoting vessel sprouting. This was also accompanied to a reduction in cancer cell intravasation and extravasation, leading to synchronous and metachronous metastasis growth inhibition, but no effects on primary tumor growth. Glufosinate treatment was well-tolerated, without liver and brain toxicity, nor hematopoietic defects. These results identify GS as a druggable enzyme to rewire macrophage functions and highlight the potential of targeting metabolic checkpoints in macrophages to treat cancer metastasis.


Assuntos
Neoplasias da Mama , Macrófagos , Aminobutiratos , Animais , Feminino , Humanos , Mediadores da Inflamação , Camundongos
9.
Biochim Biophys Acta Bioenerg ; 1860(9): 724-733, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31356773

RESUMO

The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family. In this work, two members of this family, UCP5 (BMCP1, brain mitochondrial carrier protein 1 encoded by SLC25A14) and UCP6 (KMCP1, kidney mitochondrial carrier protein 1 encoded by SLC25A30) have been thoroughly characterized biochemically. They were overexpressed in bacteria, purified and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that UCP5 and UCP6 transport inorganic anions (sulfate, sulfite, thiosulfate and phosphate) and, to a lesser extent, a variety of dicarboxylates (e.g. malonate, malate and citramalate) and, even more so, aspartate and (only UCP5) glutamate and tricarboxylates. Both carriers catalyzed a fast counter-exchange transport and a very low uniport of substrates. Transport was saturable and inhibited by mercurials and other mitochondrial carrier inhibitors at various degrees. The transport affinities of UCP5 and UCP6 were higher for sulfate and thiosulfate than for any other substrate, whereas the specific activity of UCP5 was much higher than that of UCP6. It is proposed that a main physiological role of UCP5 and UCP6 is to catalyze the export of sulfite and thiosulfate (the H2S degradation products) from the mitochondria, thereby modulating the level of the important signal molecule H2S.


Assuntos
Ânions/metabolismo , Ácidos Dicarboxílicos/metabolismo , Proteínas de Desacoplamento Mitocondrial/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfatos/metabolismo , Enxofre/metabolismo , Transporte Biológico , Humanos , Mitocôndrias/metabolismo
10.
Biochem Pharmacol ; 100: 112-32, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26616220

RESUMO

Mitochondrial carriers are proteins that shuttle a variety of metabolites, nucleotides and coenzymes across the inner mitochondrial membrane. The mitochondrial ADP/ATP carriers (AACs) specifically translocate the ATP synthesized within mitochondria to the cytosol in exchange for the cytosolic ADP, playing a key role in energy production, in promoting cell viability and regulating mitochondrial permeability transition pore opening. In Homo sapiens four genes code for AACs with different tissue distribution and expression patterns. Since AACs are dysregulated in several cancer types, the employment of known and new AAC inhibitors might be crucial for inducing mitochondrial-mediated apoptosis in cancer cells. Albeit carboxyatractyloside (CATR) and bongkrekic acid (BKA) are known to be powerful and highly selective AAC inhibitors, able to induce mitochondrial dysfunction at molecular level and poisoning at physiological level, we estimated here for the first time their affinity for the human recombinant AAC2 by in vitro transport assays. We found that the inhibition constants of CATR and BKA are 4 nM and 2.0 µM, respectively. For finding new AAC inhibitors we also performed a docking-based virtual screening of an in-house developed chemical library and we identified about 100 ligands showing high affinity for the AAC2 binding region. By testing 13 commercially available molecules, out of the 100 predicted candidates, we found that 2 of them, namely suramin and chebulinic acid, are competitive AAC2 inhibitors with inhibition constants 0.3 µM and 2.1 µM, respectively. We also demonstrated that chebulinic acid and suramin are "highly selective" AAC2 inhibitors, since they poorly inhibit other human mitochondrial carriers (namely ORC1, APC1 and AGC1).


Assuntos
Translocases Mitocondriais de ADP e ATP/antagonistas & inibidores , Translocases Mitocondriais de ADP e ATP/metabolismo , Simulação de Acoplamento Molecular/métodos , Sequência de Aminoácidos , Atractilosídeo/análogos & derivados , Atractilosídeo/química , Atractilosídeo/metabolismo , Atractilosídeo/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Sítios de Ligação/fisiologia , Ácido Bongcréquico/química , Ácido Bongcréquico/metabolismo , Ácido Bongcréquico/farmacologia , Relação Dose-Resposta a Droga , Humanos , Translocases Mitocondriais de ADP e ATP/química , Dados de Sequência Molecular , Transporte Proteico/fisiologia
11.
J Biol Chem ; 289(48): 33137-48, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25320081

RESUMO

The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Nucleotídeos de Pirimidina/química , Nucleotídeos de Pirimidina/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Células CHO , Cricetinae , Cricetulus , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte de Nucleotídeos/química , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , RNA/genética , RNA/metabolismo , RNA Mitocondrial , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Phys Chem Chem Phys ; 16(35): 18907-17, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25083519

RESUMO

Successful prediction of protein folding from an amino acid sequence is a challenge in computational biology. In order to reveal the geometric constraints that drive protein folding, highlight those constraints kept or missed by distinct lattices and for establishing which class of intra- and inter-secondary structure element interactions is the most relevant for the correct folding of proteins, we have calculated inter-alpha carbon distances in a set of 42 crystal structures consisting of mainly helix, sheet or mixed conformations. The inter-alpha carbon distances were also calculated in several lattice "hydrophobic-polar" models built from the same protein set. We found that helix structures are more prone to form "hydrophobic-hydrophobic" contacts than beta-sheet structures. At a distance lower than or equal to 3.8 Å (very short-range interactions), "hydrophobic-hydrophobic" contacts are almost absent in the native structures, while they are frequent in all the analyzed lattice models. At distances in-between 3.8 and 9.5 Å (short-/medium-range interactions), the best performing lattice for reproducing mainly helix structures is the body-centered-cubic lattice. If protein structures contain sheet portions, lattice performances get worse, with few exceptions observed for double-tetrahedral and body-centered-cubic lattices. Finally, we can observe that ab initio protein folding algorithms, i.e. those based on the employment of lattices and Monte Carlo simulated annealings, can be improved simply and effectively by preventing the generation of "hydrophobic-hydrophobic" contacts shorter than 3.8 Å, by monitoring the "hydrophobic-hydrophobic/polar-polar" contact ratio in short-/medium distance ranges and by using preferentially a body-centered-cubic lattice.


Assuntos
Proteínas/química , Algoritmos , Bases de Dados de Proteínas , Interações Hidrofóbicas e Hidrofílicas , Método de Monte Carlo , Dobramento de Proteína , Estrutura Secundária de Proteína
13.
Biochim Biophys Acta ; 1837(2): 326-34, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24296033

RESUMO

The genome of Saccharomyces cerevisiae contains 35 members of the mitochondrial carrier family, nearly all of which have been functionally characterized. In this study, the identification of the mitochondrial carrier for adenosine 5'-phosphosulfate (APS) is described. The corresponding gene (YPR011c) was overexpressed in bacteria. The purified protein was reconstituted into phospholipid vesicles and its transport properties and kinetic parameters were characterized. It transported APS, 3'-phospho-adenosine 5'-phosphosulfate, sulfate and phosphate almost exclusively by a counter-exchange mechanism. Transport was saturable and inhibited by bongkrekic acid and other inhibitors. To investigate the physiological significance of this carrier in S. cerevisiae, mutants were subjected to thermal shock at 45°C in the presence of sulfate and in the absence of methionine. At 45°C cells lacking YPR011c, engineered cells (in which APS is produced only in mitochondria) and more so the latter cells, in which the exit of mitochondrial APS is prevented by the absence of YPR011cp, were less thermotolerant. Moreover, at the same temperature all these cells contained less methionine and total glutathione than wild-type cells. Our results show that S. cerevisiae mitochondria are equipped with a transporter for APS and that YPR011cp-mediated mitochondrial transport of APS occurs in S. cerevisiae under thermal stress conditions.


Assuntos
Adenosina Fosfossulfato/metabolismo , Genes Fúngicos/genética , Mitocôndrias/metabolismo , Fosfoadenosina Fosfossulfato/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adaptação Fisiológica , Transporte Biológico/genética , Coenzima A/metabolismo , Escherichia coli/metabolismo , Teste de Complementação Genética , Glutationa/metabolismo , Cinética , Metionina/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura
14.
Biochem J ; 438(3): 433-6, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21787310

RESUMO

The mitochondrial CIC (citrate carrier) catalyses the efflux of citrate from the mitochondrial matrix in exchange for cytosolic malate. In the present paper we show that CIC mRNA and protein markedly increase in lipopolysaccharide-activated immune cells. Moreover, CIC gene silencing and CIC activity inhibition significantly reduce production of NO, reactive oxygen species and prostaglandins. These results demonstrate for the first time that CIC has a critical role in inflammation.


Assuntos
Proteínas de Transporte/fisiologia , Mediadores da Inflamação/metabolismo , Proteínas Mitocondriais/fisiologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Células Cultivadas , Citosol/metabolismo , Inativação Gênica , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Óxido Nítrico/metabolismo , RNA Mensageiro/metabolismo , Regulação para Cima
15.
J Biol Chem ; 281(23): 15687-93, 2006 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16595661

RESUMO

Up-regulation of heme oxygenase (HO-1) by either cobalt protoporphyrin (CoPP) or human gene transfer improves vascular and renal function by several mechanisms, including increases in antioxidant levels and decreases in reactive oxygen species (ROS) in vascular and renal tissue. The purpose of the present study was to determine the effect of HO-1 overexpression on mitochondrial transporters, cytochrome c oxidase, and anti-apoptotic proteins in diabetic rats (streptozotocin, (STZ)-induced type 1 diabetes). Renal mitochondrial carnitine, deoxynucleotide, and ADP/ATP carriers were significantly reduced in diabetic compared with nondiabetic rats (p < 0.05). The citrate carrier was not significantly decreased in diabetic tissue. CoPP administration produced a robust increase in carnitine, citrate, deoxynucleotide, dicarboxylate, and ADP/ATP carriers and no significant change in oxoglutarate and aspartate/glutamate carriers. The increase in mitochondrial carriers (MCs) was associated with a significant increase in cytochrome c oxidase activity. The administration of tin mesoporphyrin (SnMP), an inhibitor of HO-1 activity, prevented the restoration of MCs in diabetic rats. Human HO-1 cDNA transfer into diabetic rats increased both HO-1 protein and activity, and restored mitochondrial ADP/ATP and deoxynucleotide carriers. The increase in HO-1 by CoPP administration was associated with a significant increase in the phosphorylation of AKT and levels of BcL-XL proteins. These observations in experimental diabetes suggest that the cytoprotective mechanism of HO-1 against oxidative stress involves an increase in the levels of MCs and anti-apoptotic proteins as well as in cytochrome c oxidase activity.


Assuntos
Proteínas de Transporte/metabolismo , Diabetes Mellitus Experimental/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Rim/metabolismo , Mitocôndrias/metabolismo , Animais , Diabetes Mellitus Experimental/enzimologia , Regulação Enzimológica da Expressão Gênica , Técnicas de Transferência de Genes , Heme Oxigenase (Desciclizante)/genética , Humanos , Rim/enzimologia , Mitocôndrias/enzimologia , Ratos , Ratos Sprague-Dawley , Estreptozocina
16.
Biochem J ; 393(Pt 2): 441-6, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16194150

RESUMO

Pyrimidine (deoxy)nucleoside triphosphates are required in mitochondria for the synthesis of DNA and the various types of RNA present in these organelles. In Saccharomyces cerevisiae, these nucleotides are synthesized outside the mitochondrial matrix and must therefore be transported across the permeability barrier of the mitochondrial inner membrane. However, no protein has ever been found to be associated with this transport activity. In the present study, Rim2p has been identified as a yeast mitochondrial pyrimidine nucleotide transporter. Rim2p (replication in mitochondria 2p) is a member of the mitochondrial carrier protein family having some special features. The RIM2 gene was overexpressed in bacteria. The purified protein was reconstituted into liposomes and its transport properties and kinetic parameters were characterized. It transported the pyrimidine (deoxy)nucleoside tri- and di-phosphates and, to a lesser extent, pyrimidine (deoxy)nucleoside monophosphates, by a counter-exchange mechanism. Transport was saturable, with an apparent K(m) of 207 microM for TTP, 404 microM for UTP and 435 microM for CTP. Rim2p was strongly inhibited by mercurials, bathophenanthroline, tannic acid and Bromocresol Purple, and partially inhibited by bongkrekic acid. Furthermore, the Rim2p-mediated heteroexchanges, TTP/TMP and TTP/TDP, are electroneutral and probably H+-compensated. The main physiological role of Rim2p is proposed to be to transport (deoxy)pyrimidine nucleoside triphosphates into mitochondria in exchange for intramitochondrially generated (deoxy)pyrimidine nucleoside monophosphates.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Escherichia coli/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Nucleotídeos de Pirimidina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Clonagem Molecular , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte de Nucleotídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA