Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1383027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711969

RESUMO

The improper use and abuse of antibiotics have led to an increase in multidrug-resistant (MDR) bacteria resulting in a failure of standard antibiotic therapies. To date, this phenomenon represents a leading public health threat of the 21st century which requires alternative strategies to fight infections such as the identification of new molecules active against MDR strains. In the last 20 years, natural extracts with biological activities attracted scientific interest. Following the One Health Approach, natural by-products represent a sustainable and promising alternative solution. Consistently, the aim of the present study was to evaluate the antimicrobial activity of hydro-alcoholic pomegranate peel extract (PPE) against MDR microorganisms belonging to Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. "ESKAPE" group pathogens. Through semiquantitative and quantitative methods, the PPE showed effective antimicrobial activity against Gram-positive and Gram-negative MDR bacteria. The kinetics of bactericidal action of PPE highlighted that microbial death was achieved in a time- and dose-dependent manner. High concentrations of PPE exhibited antioxidant activity, providing a protective effect on cellular systems and red blood cell membranes. Finally, we report, for the first time, a significant intracellular antibacterial property of PPE as highlighted by its bactericidal action against the staphylococcal reference strain and its bacteriostatic effect against clinical resistant strain in the HeLa cell line. In conclusion, due to its characterized content of polyphenolic compounds and antioxidant activity strength, the PPE could be considered as a therapeutic agent alone or in conjunction with standard antibiotics against challenging infections caused by ESKAPE pathogens.

2.
Glycoconj J ; 41(2): 119-131, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38642279

RESUMO

Gram-negative bacteria living in marine waters have evolved peculiar adaptation strategies to deal with the numerous stress conditions that characterize aquatic environments. Among the multiple mechanisms for efficient adaptation, these bacteria typically exhibit chemical modifications in the structure of the lipopolysaccharide (LPS), which is a fundamental component of their outer membrane. In particular, the glycolipid anchor to the membrane of marine bacteria LPSs, i.e. the lipid A, frequently shows unusual chemical structures, which are reflected in equally singular immunological properties with potential applications as immune adjuvants or anti-sepsis drugs. In this work, we determined the chemical structure of the lipid A from Cellulophaga pacifica KMM 3664T isolated from the Sea of Japan. This bacterium showed to produce a heterogeneous mixture of lipid A molecules that mainly display five acyl chains and carry a single phosphate and a D-mannose disaccharide on the glucosamine backbone. Furthermore, we proved that C. pacifica KMM 3664T LPS acts as a weaker activator of Toll-like receptor 4 (TLR4) compared to the prototypical enterobacterial Salmonella typhimurium LPS. Our results are relevant to the future development of novel vaccine adjuvants and immunomodulators inspired by marine LPS chemistry.


Assuntos
Lipídeo A , Lipídeo A/química , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/química , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/química , Animais , Lipopolissacarídeos/química , Camundongos
3.
Microorganisms ; 12(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543488

RESUMO

Grape pomace is the main by-product of vine-winery chains. It requires adequate treatment and disposal but is also an economically underused source of bioactive plant secondary metabolites. This study aimed to investigate the antibacterial effects of polyphenolic extracts from Aglianico (Vitis vinifera L.) grape pomace. In particular, hydroethanolic extracts obtained via an ultrasonic-assisted extraction technique were selected for antimicrobial tests. The extracts were screened for their antibacterial effects against foodborne pathogens that were both Gram-positive, in the case of Staphylococcus aureus and Bacillus cereus, and Gram-negative, in the case of Escherichia coli and Salmonella enterica subsp. enterica serovar Typhimurium, showing variable bacteriostatic and bactericidal effects. In addition, our results demonstrated that the tested grape pomace extracts can reduce the inhibitory concentration of standard antibiotics. Interestingly, selected extracts inhibited biofilm development by S. aureus and B. cereus. Overall, these new insights into the antibacterial properties of grape pomace extracts may represent a relevant step in the design of novel therapeutic tools to tackle foodborne diseases, and in the management of resistant biofilm-related infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA