Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
2.
J Biol Chem ; 295(17): 5737-5750, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32188695

RESUMO

Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2-/-) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2-/- mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2-/- mice and a total of 91 in female Fatp2-/- mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator-activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2-/- liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities.


Assuntos
Coenzima A Ligases/genética , Deleção de Genes , Fígado/metabolismo , PPAR alfa/genética , Animais , Coenzima A Ligases/metabolismo , Feminino , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa/metabolismo , Transcriptoma
3.
BMC Pregnancy Childbirth ; 20(1): 93, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041569

RESUMO

BACKGROUND: Nut butter-based Ready to Use Supplemental Foods (RUSF) are an effective way to add nutrients and calories to diets of malnourished and food insecure populations. The RUSF formulations have been further modified to add micronutrients including iron and folic acid needed during pregnancy and lactation. Because docosahexaenoic acid (DHA, C22:6 n-3) enhances fetal development and birth outcomes, it has been suggested that perhaps RUSF formulations for pregnancy should also include this Omega 3 fatty acid. The goal of the present study was to gain an understanding of Zambian women's knowledge of nutritional needs in pregnancy through structured focus group discussions, and to formulate and determine the acceptability of a RUSF with DHA. METHODS: Structured focus group sessions were conducted among women attending an antenatal clinic at the University Teaching Hospitals in Lusaka, Zambia. Dietary and nutrition knowledge was surveyed through structured dialogue that was recorded by audio and transcribed verbatim. An RUSF containing 400 mg DHA from fish oil in 50 g RUSF was designed and assessed for fatty acid content and product stability. Participants then sampled the RUSF-DHA, provided feedback on taste, and were surveyed about willingness to consume the novel formula using a standardized hedonic instrument. RESULTS: The participants' knowledge of foods recommended for use in pregnancy included fruits, vegetables, meat, and fish. Most women reported eating fish at least once per week, although the specific type of fish varied. Most did not have prior knowledge of the importance of consuming fish during pregnancy or that some fish types were more nutritional than others as they included omega 3 fatty acids. The participants were uniformly accepting of the RUSF-DHA for the purpose of enhancing birth and developmental outcomes, but were critical of the aroma in hedonic testing. CONCLUSIONS: Women were committed to consuming a healthy diet that would impact the outcome of pregnancy, and were receptive to advice on the importance of consuming foods such as fish as a source of DHA. The RUSF-DHA formulation was acceptable due to the potential benefits for the developing infant, however, the fishy odor may be limiting for long-term daily use.


Assuntos
Dieta Saudável/psicologia , Ácidos Docosa-Hexaenoicos/administração & dosagem , Óleos de Peixe/administração & dosagem , Aceitação pelo Paciente de Cuidados de Saúde/psicologia , Gestantes/psicologia , Cuidado Pré-Natal/psicologia , Suplementos Nutricionais , Fast Foods , Feminino , Grupos Focais , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Zâmbia
4.
Sci Rep ; 9(1): 19548, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863035

RESUMO

Obesity is a leading risk factor for type-2 diabetes. Diabetes often leads to the dysregulation of angiogenesis, although the mechanism is not fully understood. Previously, long noncoding RNAs (lncRNAs) have been found to modulate angiogenesis. In this study, we asked how the expression levels of lncRNAs change in endothelial cells in response to excessive palmitic acid treatment, an obesity-like condition. Bioinformatics analysis revealed that 305 protein-coding transcripts were upregulated and 70 were downregulated, while 64 lncRNAs were upregulated and 46 were downregulated. Gene ontology and pathway analysis identified endoplasmic reticulum stress, HIF-1 signaling, and Toll-like receptor signaling as enriched after palmitic acid treatment. Moreover, we newly report enrichment of AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling, and cysteine and methionine metabolism by palmitic acid. One lncRNA, Colorectal Neoplasia Differentially Expressed (CRNDE), was selected for further investigation. Palmitic acid induces CRNDE expression by 1.9-fold. We observed that CRNDE knockdown decreases endothelial cell proliferation, migration, and capillary tube formation. These decreases are synergistic under palmitic acid stress. These data demonstrated that lncRNA CRNDE is a regulator of endothelial cell proliferation, migration, and tube formation in response to palmitic acid, and a potential target for therapies treating the complications of obesity-induced diabetes.


Assuntos
Células Endoteliais/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Ontologia Genética , Células Endoteliais da Veia Umbilical Humana , Humanos , MicroRNAs/genética , Interferência de RNA , RNA Longo não Codificante/genética , Análise de Sequência de RNA , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
5.
Plant Physiol ; 181(3): 1029-1049, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31501300

RESUMO

Microalgae accumulate lipids during stress such as that of nutrient deprivation, concomitant with cessation of growth and depletion of chloroplasts. By contrast, certain small chemical compounds selected by high-throughput screening in Chlamydomonas reinhardtii can induce lipid accumulation during growth, maintaining biomass. Comprehensive pathway analyses using proteomics, transcriptomics, and metabolomics data were acquired from Chlamydomonas cells grown in the presence of one of two structurally distinct lipid activators. WD10784 stimulates both starch and lipid accumulation, whereas WD30030-treated cells accumulate only lipids. The differences in starch accumulation are largely due to differential effects of the two compounds on substrate levels that feed into starch synthesis and on genes encoding starch metabolic enzymes. The compounds had differential effects on photosynthesis, respiration, and oxidative stress pathways. Cells treated with WD10784 showed slowed growth over time and reduced abundance of photosynthetic proteins, decreased respiration, and increased oxidative stress proteins, glutathione, and reactive oxygen species specific to this compound. Both compounds maintained central carbon and nitrogen metabolism, including the tricarboxylic acid cycle, glycolysis, respiration, and the Calvin-Benson-Bassham cycle. There were few changes in proteins and transcripts related to fatty acid biosynthesis, whereas proteins and transcripts for triglyceride production were elevated, suggesting that lipid synthesis is largely driven by substrate availability. This study reports that the compound WD30030 and, to a lesser extent WD10784, increases lipid and lipid droplet synthesis and storage without restricting growth or biomass accumulation by mechanisms that are substantially different from nutrient deprivation.


Assuntos
Chlamydomonas/metabolismo , Compostos Orgânicos/farmacologia , Chlamydomonas/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Glicólise/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Metabolômica , Fotossíntese/efeitos dos fármacos , Fotossíntese/fisiologia , Proteômica/métodos , Amido/metabolismo
6.
Nature ; 569(7754): 73-78, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30996346

RESUMO

Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are pathologically activated neutrophils that are crucial for the regulation of immune responses in cancer. These cells contribute to the failure of cancer therapies and are associated with poor clinical outcomes. Despite recent advances in the understanding of PMN-MDSC biology, the mechanisms responsible for the pathological activation of neutrophils are not well defined, and this limits the selective targeting of these cells. Here we report that mouse and human PMN-MDSCs exclusively upregulate fatty acid transport protein 2 (FATP2). Overexpression of FATP2 in PMN-MDSCs was controlled by granulocyte-macrophage colony-stimulating factor, through the activation of the STAT5 transcription factor. Deletion of FATP2 abrogated the suppressive activity of PMN-MDSCs. The main mechanism of FATP2-mediated suppressive activity involved the uptake of arachidonic acid and the synthesis of prostaglandin E2. The selective pharmacological inhibition of FATP2 abrogated the activity of PMN-MDSCs and substantially delayed tumour progression. In combination with checkpoint inhibitors, FATP2 inhibition blocked tumour progression in mice. Thus, FATP2 mediates the acquisition of immunosuppressive activity by PMN-MDSCs and represents a target to inhibit the functions of PMN-MDSCs selectively and to improve the efficiency of cancer therapy.


Assuntos
Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neutrófilos/metabolismo , Idoso , Animais , Ácido Araquidônico/metabolismo , Dinoprostona/metabolismo , Proteínas de Transporte de Ácido Graxo/antagonistas & inibidores , Feminino , Humanos , Metabolismo dos Lipídeos , Lipídeos , Masculino , Camundongos , Pessoa de Meia-Idade , Neutrófilos/patologia , Fator de Transcrição STAT5/metabolismo
7.
Int Immunopharmacol ; 65: 580-592, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30447537

RESUMO

Rodent and clinical studies have documented that myeloid cell infiltration of tumors is associated with poor outcomes, neutrophilia and lymphocytopenia. This contrasts with increased lymphocyte infiltration of tumors, which is correlated with improved outcomes. Lifestyle parameters, such as obesity and diets with high levels of saturated fat and/or omega (ω)-6 polyunsaturated fatty acids (PUFAs), can influence these inflammatory parameters, including an increase in extramedullary myelopoiesis (EMM). While tumor secretion of growth factors (GFs) and chemokines regulate tumor-immune-cell crosstalk, lifestyle choices also contribute to inflammation, abnormal pathology and leukocyte infiltration of tumors. A relationship between obesity and high-fat diets (notably saturated fats in Western diets) and inflammation, tumor incidence, metastasis and poor outcomes is generally accepted. However, the mechanisms of dietary promotion of an inflammatory microenvironment and targeted drugs to inhibit the clinical sequelae are poorly understood. Thus, modifications of obesity and dietary fat may provide preventative or therapeutic approaches to control tumor-associated inflammation and disease progression. Currently, the majority of basic and clinical research does not differentiate between obesity and fatty acid consumption as mediators of inflammatory and neoplastic processes. In this review, we discuss the relationships between dietary PUFAs, inflammation and neoplasia and experimental strategies to improve our understanding of these relationships. We conclude that dietary composition, notably the ratio of ω-3 vs ω-6 PUFA regulates tumor growth and the frequency and sites of metastasis that together, impact overall survival (OS) in mice.


Assuntos
Mediadores da Inflamação/imunologia , Lipídeos/imunologia , Células Mieloides/imunologia , Neoplasias/imunologia , Obesidade/imunologia , Animais , Antineoplásicos/uso terapêutico , Dieta Ocidental , Humanos , Imunomodulação , Lipídeos/uso terapêutico , Neoplasias/terapia
8.
Clin Exp Metastasis ; 35(8): 797-818, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30327985

RESUMO

Epidemiological studies show a reduced risk of breast cancer (BC) in women consuming high levels of long-chain (LC) omega-3 (ω-3) fatty acids (FAs) compared with women who consumed low levels. However, the regulatory and mechanistic roles of dietary ω-6 and LC-ω-3 FAs on tumor progression, metastasis and survival are poorly understood. Female BALB/c mice (10-week old) were pair-fed with a diet containing ω-3 or an isocaloric, isolipidic ω-6 diet for 16 weeks prior to the orthotopic implantation of 4T1 mammary tumor cells. Major outcomes studied included: mammary tumor growth, survival analysis, and metastases analyses in multiple organs including pulmonary, hepatic, bone, cardiac, renal, ovarian, and contralateral MG (CMG). The dietary regulation of the tumor microenvironment was evaluated in mice autopsied on day-35 post tumor injection. In mice fed the ω-3 containing diet, there was a significant delay in tumor initiation and prolonged survival relative to the ω-6 diet-fed group. The tumor size on day 35 post tumor injection in the ω-3 group was 50% smaller and the frequencies of pulmonary and bone metastases were significantly lower relative to the ω-6 group. Similarly, the incidence/frequencies and/or size of cardiac, renal, ovarian metastases were significantly lower in mice fed the ω-3 diet. The analyses of the tumor microenvironment showed that tumors in the ω-3 group had significantly lower numbers of proliferating tumor cells (Ki67+)/high power field (HPF), and higher numbers of apoptotic tumor cells (TUNEL+)/HPF, lower neo-vascularization (CD31+ vessels/HPF), infiltration by neutrophil elastase+ cells, and macrophages (F4/80+) relative to the tumors from the ω-6 group. Further, in tumors from the ω-3 diet-fed mice, T-cell infiltration was 102% higher resulting in a neutrophil to T-lymphocyte ratio (NLR) that was 76% lower (p < 0.05). Direct correlations were observed between NLR with tumor size and T-cell infiltration with the number of apoptotic tumor cells. qRT-PCR analysis revealed that tumor IL10 mRNA levels were significantly higher (six-fold) in the tumors from mice fed the ω-3 diet and inversely correlated with the tumor size. Our data suggest that dietary LC-ω-3FAs modulates the mammary tumor microenvironment slowing tumor growth, and reducing metastases to both common and less preferential organs resulting in prolonged survival. The surrogate analyses undertaken support a mechanism of action by dietary LC-ω-3FAs that includes, but is not limited to decreased infiltration by myeloid cells (neutrophils and macrophages), an increase in CD3+ lymphocyte infiltration and IL10 associated anti-inflammatory activity.


Assuntos
Dieta , Ácidos Graxos Ômega-3 , Neoplasias Mamárias Experimentais/patologia , Metástase Neoplásica/patologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias
9.
J Proteome Res ; 17(11): 4017-4022, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30303385

RESUMO

Despite inherent complementarity, nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) are routinely separately employed to characterize metabolomics samples. More troubling is the erroneous view that metabolomics is better served by exclusively utilizing MS. Instead, we demonstrate the importance of combining NMR and MS for metabolomics by using small chemical compound treatments of Chlamydomonas reinhardtii as an illustrative example. A total of 102 metabolites were detected (82 by gas chromatography-MS, 20 by NMR, and 22 by both techniques). Out of these, 47 metabolites of interest were identified: 14 metabolites were uniquely identified by NMR, and 16 metabolites were uniquely identified by GC-MS. A total of 17 metabolites were identified by both NMR and GC-MS. In general, metabolites identified by both techniques exhibited similar changes upon compound treatment. In effect, NMR identified key metabolites that were missed by MS and enhanced the overall coverage of the oxidative pentose phosphate pathway, Calvin cycle, tricarboxylic acid cycle, and amino acid biosynthetic pathways that informed on pathway activity in central carbon metabolism, leading to fatty-acid and complex-lipid synthesis. Our study emphasizes a prime advantage of combining multiple analytical techniques: the improved detection and annotation of metabolites.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectroscopia de Ressonância Magnética/métodos , Metaboloma/fisiologia , Chlamydomonas reinhardtii/química , Misturas Complexas/química , Redes e Vias Metabólicas/fisiologia , Análise de Componente Principal
10.
PLoS One ; 13(9): e0204505, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30261009

RESUMO

Algae are often promoted as feedstock organisms to produce a sustainable petroleum fossil fuel alternative. However, to induce lipid accumulation most often requires a severe stress that is difficult to induce in large batch cultures. The objective of this study is to analyze and mathematically model heat stress on growth, chlorophyll content, triacylglyceride, and starch synthesis in algae. We initially screened 30 algal species for the most pronounced induction of lipid droplets from heat stress using confocal microscopy and mass spectroscopy techniques. One species, Coccomyxa subellipsoidea C169, was selected and subjected to further biochemical analyses using a jacketed bioreactor amended with 1% CO2 at 25°C, 30°C, 32°C, 33°C, 34°C, 35°C, and 36°C. Lipid and starch accumulation was less extreme than N stress. Growth was reduced above 25°C, but heat stress induced lipid droplet synthesis was negatively correlated with growth only past a demonstrated threshold temperature above 32°C. The optimal temperature for lipid accumulation was 35°C, which led to 6% of dry weight triglyceride content and a 72% reduction from optimal growth after 5 days. Fatty acid influx rates into triglycerides and 15N labeling of amino acids and proteins indicate that heat stress is mechanistically distinct from N stress. Thus, this study lends support to a novel hypothesis that lipid droplet triglycerides result from a redistribution of carbon flux as fatty acids to neutral storage lipids over membrane or other lipids.


Assuntos
Biocombustíveis , Clorófitas/metabolismo , Microalgas/metabolismo , Biomassa , Reatores Biológicos , Clorofila/metabolismo , Clorófitas/classificação , Clorófitas/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Resposta ao Choque Térmico , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Microalgas/classificação , Microalgas/crescimento & desenvolvimento , Modelos Biológicos , Nitrogênio/metabolismo , Filogenia , Especificidade da Espécie , Amido/metabolismo , Temperatura , Triglicerídeos/metabolismo
11.
Prog Lipid Res ; 71: 101-123, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30017715

RESUMO

Perturbation of a biological system with small molecules to achieve a desired phenotype or activity is commonly referred as chemical genetics. In pharmaceutical discovery, this approach is most often employed in target-based screening but in plants systems the focus is primarily on phenotypic selection for commercially relevant phenotype generation such as crop improvement or disease and pathogen resistance. Likewise, algae are considered feedstock organisms for viable and sustainable biofuels and other high value products with commercial applications. Algal triacylglycerol synthesis is therefore an important target for chemical genetics using high throughput technologies. In this review, efforts are directed towards summarizing our present understanding of the regulation of algal triacylglycerol biosynthesis, highlighting critical enzymes in lipid and carbon metabolism that may be manipulated to increase lipid metabolism in algae. These enzymes and pathways are targets for chemical genetics with the focus on selection of small molecules as tools to improve triacylglycerol storage. Using case studies, we summarize how chemical genetics is being used in plant and microalgal systems to address these critical problems.


Assuntos
Metabolismo dos Lipídeos/genética , Engenharia Metabólica/métodos , Microalgas/genética , Microalgas/metabolismo , Biocombustíveis , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/biossíntese , Microalgas/efeitos dos fármacos , Fenótipo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Triglicerídeos/biossíntese
12.
J Mammary Gland Biol Neoplasia ; 23(1-2): 43-58, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29574638

RESUMO

Studies in rodents have shown that dietary modifications as mammary glands (MG) develop, regulates susceptibility to mammary tumor initiation. However, the effects of dietary PUFA composition on MGs in adult life, remains poorly understood. This study investigated morphological alterations and inflammatory microenvironments in the MGs of adult mice fed isocaloric and isolipidic liquid diets with varying compositions of omega (ω)-6 and long-chain (Lc)-ω3FA that were pair-fed. Despite similar consumption levels of the diets, mice fed the ω-3 diet had significantly lower body-weight gains, and abdominal-fat and mammary fat pad (MFP) weights. Fatty acid analysis showed significantly higher levels of Lc-ω-3FAs in the MFPs of mice on the ω-3 diet, while in the MFPs from the ω-6 group, Lc-ω-3FAs were undetectable. Our study revealed that MGs from ω-3 group had a significantly lower ductal end-point density, branching density, an absence of ductal sprouts, a thinner ductal stroma, fewer proliferating epithelial cells and a lower transcription levels of estrogen receptor 1 and amphiregulin. An analysis of the MFP and abdominal-fat showed significantly smaller adipocytes in the ω-3 group, which was accompanied by lower transcription levels of leptin, IGF1, and IGF1R. Further, MFPs from the ω-3 group had significantly decreased numbers and sizes of crown-like-structures (CLS), F4/80+ macrophages and decreased expression of proinflammatory mediators including Ptgs2, IL6, CCL2, TNFα, NFκB, and IFNγ. Together, these results support dietary Lc-ω-3FA regulation of MG structure and density and adipose tissue inflammation with the potential for dietary Lc-ω-3FA to decrease the risk of mammary gland tumor formation.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Inflamação/metabolismo , Glândulas Mamárias Animais/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta/métodos , Feminino , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
13.
J Nutr Biochem ; 52: 92-102, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29175671

RESUMO

Recent evidence has suggested that dietary polyunsaturated fatty acids (PUFAs) modulate inflammation; however, few studies have focused on the pathobiology of PUFA using isocaloric and isolipidic diets and it is unclear if the associated pathologies are due to dietary PUFA composition, lipid metabolism or obesity, as most studies compare diets fed ad libitum. Our studies used isocaloric and isolipidic liquid diets (35% of calories from fat), with differing compositions of omega (ω)-6 or long chain (Lc) ω-3 PUFA that were pair-fed and assessed hepatic pathology, inflammation and lipid metabolism. Consistent with an isocaloric, pair-fed model we observed no significant difference in diet consumption between the groups. In contrast, the body and liver weight, total lipid level and abdominal fat deposits were significantly higher in mice fed an ω-6 diet. An analysis of the fatty acid profile in plasma and liver showed that mice on the ω-6 diet had significantly more arachidonic acid (AA) in the plasma and liver, whereas, in these mice ω-3 fatty acids such as eicosapentaenoic acid (EPA) were not detected and docosahexaenoic acid (DHA) was significantly lower. Histopathologic analyses documented that mice on the ω-6 diet had a significant increase in macrovesicular steatosis, extramedullary myelopoiesis (EMM), apoptotic hepatocytes and decreased glycogen storage in lobular hepatocytes, and hepatocyte proliferation relative to mice fed the Lc ω-3 diet. Together, these results support PUFA dietary regulation of hepatic pathology and inflammation with implications for enteral feeding regulation of steatosis and other hepatic lesions.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dieta , Ingestão de Energia , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-6/química , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/metabolismo , Camundongos Endogâmicos BALB C , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
14.
Plant Physiol ; 174(4): 2146-2165, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28652262

RESUMO

Microalgae are proposed as feedstock organisms useful for producing biofuels and coproducts. However, several limitations must be overcome before algae-based production is economically feasible. Among these is the ability to induce lipid accumulation and storage without affecting biomass yield. To overcome this barrier, a chemical genetics approach was employed in which 43,783 compounds were screened against Chlamydomonas reinhardtii, and 243 compounds were identified that increase triacylglyceride (TAG) accumulation without terminating growth. Identified compounds were classified by structural similarity, and 15 were selected for secondary analyses addressing impacts on growth fitness, photosynthetic pigments, and total cellular protein and starch concentrations. TAG accumulation was verified using gas chromatography-mass spectrometry quantification of total fatty acids, and targeted TAG and galactolipid measurements were performed using liquid chromatography-multiple reaction monitoring/mass spectrometry. These results demonstrated that TAG accumulation does not necessarily proceed at the expense of galactolipid. Untargeted metabolite profiling provided important insights into pathway shifts due to five different compound treatments and verified the anabolic state of the cells with regard to the oxidative pentose phosphate pathway, Calvin cycle, tricarboxylic acid cycle, and amino acid biosynthetic pathways. Metabolite patterns were distinct from nitrogen starvation and other abiotic stresses commonly used to induce oil accumulation in algae. The efficacy of these compounds also was demonstrated in three other algal species. These lipid-inducing compounds offer a valuable set of tools for delving into the biochemical mechanisms of lipid accumulation in algae and a direct means to improve algal oil content independent of the severe growth limitations associated with nutrient deprivation.


Assuntos
Clorófitas/metabolismo , Metabolismo dos Lipídeos , Metabolômica/métodos , Vias Biossintéticas , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/metabolismo , Clorófitas/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas , Ensaios de Triagem em Larga Escala , Lipídeos/química , Metaboloma , Análise Multivariada , Fotossíntese , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/metabolismo , Amido/metabolismo
15.
J Biol Chem ; 292(1): 361-374, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27903654

RESUMO

Deriving biofuels and other lipoid products from algae is a promising future technology directly addressing global issues of atmospheric CO2 balance. To better understand the metabolism of triglyceride synthesis in algae, we examined their metabolic origins in the model species, Coccomyxa subellipsoidea C169, using stable isotopic labeling. Labeling patterns arising from [U-13C]glucose, 13CO2, or D2O supplementation were analyzed by GC-MS and/or LC-MS over time courses during nitrogen starvation to address the roles of catabolic carbon recycling, acyl chain redistribution, and de novo fatty acid (FA) synthesis during the expansion of the lipid bodies. The metabolic origin of stress-induced triglyceride was found to be a continuous 8:2 ratio between de novo synthesized FA and acyl chain transfer from pre-stressed membrane lipids with little input from lipid remodeling. Membrane lipids were continually synthesized with associated acyl chain editing during nitrogen stress, in contrast to an overall decrease in total membrane lipid. The incorporation rates of de novo synthesized FA into lipid classes were measured over a time course of nitrogen starvation. The synthesis of triglycerides, phospholipids, and galactolipids followed a two-stage pattern where nitrogen starvation resulted in a 2.5-fold increase followed by a gradual decline. Acyl chain flux into membrane lipids was dominant in the first stage followed by triglycerides. These data indicate that the level of metabolic control that determines acyl chain flux between membrane lipids and triglycerides during nitrogen stress relies primarily on the Kennedy pathway and de novo FA synthesis with limited, defined input from acyl editing reactions.


Assuntos
Carbono/metabolismo , Ácidos Graxos/metabolismo , Marcação por Isótopo/métodos , Lipídeos de Membrana/metabolismo , Microalgas/metabolismo , Nitrogênio/deficiência , Triglicerídeos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas
16.
Medchemcomm ; 7(4): 612-622, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27446528

RESUMO

The fatty acid transport proteins (FATP) are classified as members of the Solute Carrier 27 (Slc27) family of proteins based on their ability to function in the transport of exogenous fatty acids. These proteins, when localized to the plasma membrane or at intracellular membrane junctions with the endoplasmic reticulum, function as a gate in the regulated transport of fatty acids and thus represent a therapeutic target to delimit the acquisition of fatty acids that contribute to disease as in the case of fatty acid overload. To date, FATP1, FATP2, and FATP4 have been used as targets in the selection of small molecule inhibitors with the goal of treating insulin resistance and attenuating dietary absorption of fatty acids. Several studies targeting FATP1 and FATP4 were based on the intrinsic acyl CoA synthetase activity of these proteins and not on transport directly. While several classes of compounds were identified as potential inhibitors of fatty acid transport, in vivo studies using a mouse model failed to provide evidence these compounds were effective in blocking or attenuating fatty acid transport. Studies targeting FATP2 employed a naturally occurring splice variant, FATP2b, which lacks intrinsic acyl CoA synthetase due to the deletion of exon 3, yet is fully functional in fatty acid transport. These studies identified two compounds, 5'-bromo-5-phenyl-spiro[3H-1,3,4-thiadiazole-2,3'-indoline]-2'-one), now referred to as Lipofermata, and 2-benzyl-3-(4-chlorophenyl)-5-(4-nitrophenyl)pyrazolo[1,5-a]pyrimidin-7(4H)-one, now called Grassofermata, that are effective fatty acid transport inhibitors both in vitro using a series of model cell lines and in vivo using a mouse model.

17.
Biochem Pharmacol ; 98(1): 167-81, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26394026

RESUMO

Chronic elevation of plasma free fatty acid (FFA) levels is commonly associated with obesity, type 2 diabetes, cardiovascular disease and some cancers. Experimental evidence indicates FFA and their metabolites contribute to disease development through lipotoxicity. Previously, we identified a specific fatty acid transport inhibitor CB16.2, a.k.a. Lipofermata, using high throughput screening methods. In this study, efficacy of transport inhibition was measured in four cell lines that are models for myocytes (mmC2C12), pancreatic ß-cells (rnINS-1E), intestinal epithelial cells (hsCaco-2), and hepatocytes (hsHepG2), as well as primary human adipocytes. The compound was effective in inhibiting uptake with IC50s between 3 and 6µM for all cell lines except human adipocytes (39µM). Inhibition was specific for long and very long chain fatty acids but had no effect on medium chain fatty acids (C6-C10), which are transported by passive diffusion. Derivatives of Lipofermata were evaluated to understand structural contributions to activity. Lipofermata prevented palmitate-mediated oxidative stress, induction of BiP and CHOP, and cell death in a dose-dependent manner in hsHepG2 and rnINS-1E cells, suggesting it will prevent induction of fatty acid-mediated cell death pathways and lipotoxic disease by channeling excess fatty acids to adipose tissue and away from liver and pancreas. Importantly, mice dosed orally with Lipofermata were not able to absorb (13)C-oleate demonstrating utility as an inhibitor of fatty acid absorption from the gut.


Assuntos
Ácidos Graxos/metabolismo , Compostos de Espiro/farmacologia , Tiadiazóis/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Estrutura Molecular , Bibliotecas de Moléculas Pequenas
18.
Biochem Biophys Res Commun ; 465(3): 534-41, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26284975

RESUMO

The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC50 8-11 µM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC50 58 µM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of (13)C-oleate demonstrating its potential as a therapeutic agent.


Assuntos
Adipócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Coenzima A Ligases/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Células CACO-2 , Coenzima A Ligases/antagonistas & inibidores , Ácidos Graxos/farmacocinética , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
J Proteome Res ; 13(3): 1373-96, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24528286

RESUMO

Nitrogen starvation induces a global stress response in microalgae that results in the accumulation of lipids as a potential source of biofuel. Using GC-MS-based metabolite and iTRAQ-labeled protein profiling, we examined and correlated the metabolic and proteomic response of Chlamydomonas reinhardtii under nitrogen stress. Key amino acids and metabolites involved in nitrogen sparing pathways, methyl group transfer reactions, and energy production were decreased in abundance, whereas certain fatty acids, citric acid, methionine, citramalic acid, triethanolamine, nicotianamine, trehalose, and sorbitol were increased in abundance. Proteins involved in nitrogen assimilation, amino acid metabolism, oxidative phosphorylation, glycolysis, TCA cycle, starch, and lipid metabolism were elevated compared with nonstressed cultures. In contrast, the enzymes of the glyoxylate cycle, one carbon metabolism, pentose phosphate pathway, the Calvin cycle, photosynthetic and light harvesting complex, and ribosomes were reduced. A noteworthy observation was that citrate accumulated during nitrogen stress coordinate with alterations in the enzymes that produce or utilize this metabolite, demonstrating the value of comparing protein and metabolite profiles to understand complex patterns of metabolic flow. Thus, the current study provides unique insight into the global metabolic adjustments leading to lipid storage during N starvation for application toward advanced biofuel production technologies.


Assuntos
Proteínas de Algas/análise , Chlamydomonas reinhardtii/metabolismo , Ácidos Graxos/biossíntese , Metabolismo dos Lipídeos/fisiologia , Metaboloma , Nitrogênio/deficiência , Proteoma/análise , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Biocombustíveis , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Ácido Cítrico/análise , Ácido Cítrico/metabolismo , Metabolismo Energético , Ácidos Graxos/análise , Expressão Gênica , Anotação de Sequência Molecular , Proteoma/genética , Proteoma/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse Fisiológico
20.
Biochem Biophys Res Commun ; 440(4): 743-8, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24113382

RESUMO

In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of FATP2 resulted in increases in all four classes of phospholipid, indicating little selectivity. In the case of C22:6, there were significant increases of this exogenous fatty acids being trafficking into PC and PI. Collectively, these data support the conclusion that FATP2 has a dual function in the pathways linking the transport and activation of exogenous fatty acids. We discuss the differential roles of FATP2 and its role in both fatty acid transport and fatty acid activation in the context of lipid homeostasis.


Assuntos
Coenzima A Ligases/fisiologia , Ácidos Graxos/metabolismo , Transporte Biológico , Coenzima A Ligases/genética , Células HEK293 , Humanos , Metabolismo dos Lipídeos , Ácidos Fosfatídicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA