Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399428

RESUMO

Rosacea is a chronic skin disorder that affects more than 5% of the world's population, with the number increasing every year. Moreover, studies show that one-third of those suffering from rosacea report a degree of depression and are less compliant with treatment. Despite being the subject of prolonged studies, the pathogenesis of rosacea remains controversial and elusive. Since most medications used for the management of this pathology have side effects or simply do not yield the necessary results, many patients lose trust in the treatment and drop it altogether. Thus, dermato-cosmetic products with natural ingredients are gaining more and more notoriety in front of synthetic ones, due to the multiple benefits and the reduced number and intensity of side effects. This review is a comprehensive up-to-date report of studies that managed to prove the beneficial effects of different botanicals that may be useful in the short and long-term management of rosacea-affected skin. Based on recent preclinical and clinical studies, this review describes the mechanisms of action of a large array of phytochemicals responsible for alleviating the clinical symptomatology of the disease. This is useful in further aiding and better comprehending the way plant-based products may help in managing this complex condition, paving the way for research in this area of study.

2.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629103

RESUMO

Pentacyclic triterpenoids (TTs) represent a unique family of phytochemicals with interesting properties and pharmacological effects, with some representatives, such as betulinic acid (BA) and betulin (B), being mainly investigated as potential anticancer molecules. Considering the recent scientific and preclinical investigations, a review of their anticancer mechanisms, structure-related activity, and efficiency improved by their insertion in nanolipid vehicles for targeted delivery is presented. A systematic literature study about their effects on tumor cells in vitro and in vivo, as free molecules or encapsulated in liposomes or nanolipids, is discussed. A special approach is given to liposome-TTs and nanolipid-TTs complexes to be linked to microbubbles, known as contrast agents in ultrasonography. The production of such supramolecular conjugates to deliver the drugs to target cells via sonoporation represents a new scientific and applicative direction to improve TT efficiency, considering that they have limited availability as lipophilic molecules. Relevant and recent examples of in vitro and in vivo studies, as well as the challenges for the next steps towards the application of these complex delivery systems to tumor cells, are discussed, as are the challenges for the next steps towards the application of targeted delivery to tumor cells, opening new directions for innovative nanotechnological solutions.


Assuntos
Triterpenos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Triterpenos Pentacíclicos , Meios de Contraste , Eritrócitos Anormais , Lipossomos
3.
Plants (Basel) ; 13(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38202344

RESUMO

The prevalence and severity of skin cancer, specifically malignant melanoma, among Caucasians remains a significant concern. Natural compounds from plants have long been explored as potential anticancer agents. Betulinic acid (BI) has shown promise in its therapeutic properties, including its anticancer effects. However, its limited bioavailability has hindered its medicinal applications. To address this issue, two recently synthesized semisynthetic derivatives, N-(2,3-indolo-betulinoyl)diglycylglycine (BA1) and N-(2,3-indolo-betulinoyl)glycylglycine (BA2), were compared with previously reported compounds N-(2,3-indolo-betulinoyl)glycine (BA3), 2,3-indolo-betulinic acid (BA4), and BI. These compounds were evaluated for their effects on murine melanoma cells (B164A5) using various in vitro assays. The introduction of an indole framework at the C2 position of BI resulted in an increased cytotoxicity. Furthermore, the cytotoxicity of compound BA4 was enhanced by conjugating its carboxylic group with an amino acid residue. BA2 and BA3, with glycine and glycylglycine residues at C28, exhibited approximately 2.20-fold higher inhibitory activity compared to BA4. The safety assessment of the compounds on human keratinocytes (HaCaT) has revealed that concentrations up to 10 µM slightly reduced cell viability, while concentrations of 75 µM resulted in lower cell viability rates. LDH leakage assays confirmed cell membrane damage in B164A5 cells when exposed to the tested compounds. BA2 and BA3 exhibited the highest LDH release, indicating their strong cytotoxicity. The NR assay revealed dose-dependent lysosome disruption for BI and 2,3-indolo-betulinic acid derivatives, with BA1, BA2, and BA3 showing the most cytotoxic effects. Scratch assays demonstrated concentration-dependent inhibition of cell migration, with BA2 and BA3 being the most effective. Hoechst 3342 staining revealed that BA2 induced apoptosis, while BA3 induced necrosis at lower concentrations, confirming their anti-melanoma properties. In conclusion, the semisynthetic derivatives of BI, particularly BA2 and BA3, show promise as potential candidates for further research in developing effective anti-cancer therapies.

4.
Antioxidants (Basel) ; 13(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38247456

RESUMO

Combretum racemosum, a plant from the Combretaceae family, is traditionally used in Benin for various health problems. However, scientific research on Beninese samples of this plant is limited. The aim of this study was to identify and assess the bioactive compounds in the plant's leaves and roots. Initial screening involved analyzing powders derived from these parts for total polyphenols, flavonoids, and both condensed and hydrolyzable tannins. The polyphenolic compounds were analyzed using HPLC-DAD-ESI-MS. To evaluate the plant's antimicrobial properties, the agar diffusion method was employed, while FRAP and DPPH assays were used to determine its antioxidant capacity. For anti-inflammatory activity, the study utilized tests for in vitro protein denaturation inhibition and in vivo acute edema induced by carrageenan. Additionally, an antiproliferative assay was conducted using the human melanoma cell line A375. The analysis revealed the presence of significant polyphenolic compounds in both the leaf and root extracts of C. racemosum. Notably, compounds like Pedunculagin, Vescalagin, Casuarictin, and Digalloyl-glucoside were abundant in the leaves, with Vescalagin being especially predominant in the roots. The study also found that the dichloromethane extracts from the leaves and roots exhibited bactericidal effects on a substantial percentage of meat-isolated strains. Moreover, the antioxidant activities of these extracts were confirmed through FRAP and DPPH methods. Interestingly, the dichloromethane root extract showed strong activity in inhibiting thermal albumin denaturation, while the water-ethanol leaf extract demonstrated significant edema inhibition. Finally, the study observed that C. racemosum extracts reduced cell viability in a dose-dependent manner, with leaf extracts showing more pronounced antiproliferative effects than root extracts. These findings highlight the potential of C. racemosum leaves and roots as sources of compounds with diverse and significant biological activities. In conclusion, C. racemosum's leaves and roots exhibit promising biological activities, highlighting their potential medicinal value.

5.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499484

RESUMO

Novel and natural molecules for pharmaceutical applications are a contemporary preoccupation in science which prompts research in underexplored environments. Astragalus exscapus ssp. transsilvanicus (Schur) Nyár. (ASTRA) is a plant species endemic to Transylvania, having a very similar root system with that of A. membranaceus (Fisch.) Bunge, known for its health promoting properties. The present study endeavored to perform basic characterization of the ASTRA roots by proximate analysis, to investigate the fatty acid profile of the lipids extracted from the ASTRA roots, to examine the phenolic composition of the root extracts by liquid chromatography, and to evaluate the biological activities through determination of the antioxidant, antimicrobial and cytotoxic capacities of the extracts. The primary compounds found in the ASTRA roots were carbohydrates and lipids, and the fatty acid composition determined by GC-MS showed linoleic acid as preponderant compound with 31.10%, followed by palmitic, oleic and α-linolenic acids with 17.30%, 15.61% and 14.21%, respectively. The methanol extract of the ASTRA roots presented highest phenolic content, Astragaloside IV being the predominant compound with 425.32 ± 0.06 µg/g DW. The antimicrobial assay showed remarkable antimicrobial potential of the extract at a concentration of 0.356 and 0.703 mg ASTRA root powder (DW)/mL, highlighting its efficacy to inhibit S. aureus and S. epidermidis bacterial strains. Furthermore, the cell proliferation assessment showed the noteworthy proficiency of the treatment in inhibiting the proliferation of B16F10 melanoma cells.


Assuntos
Anti-Infecciosos , Extratos Vegetais , Extratos Vegetais/química , Staphylococcus aureus , Fenóis/farmacologia , Fenóis/análise , Antioxidantes/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/análise , Ácidos Graxos/análise , Raízes de Plantas
6.
Plants (Basel) ; 11(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36501302

RESUMO

Solanum bulbocastanum is a wild potato species, intensively used in potato breeding programs due to its resistance to environmental factors. Thus, its biochemical profile and putative human health-related traits might be transferred into potato cultivars aimed for consumption. This study aims to assess the phytochemical profile and the selective cytotoxicity of an S. bulbocastanum extract against breast cancer cells. Dry leaves were subjected to ultrasonication-assisted extraction in methanol [70%]. The phenolic and glycoalkaloid profiles were determined by HPLC-PDA/-ESI+-MS. The volatile profile was investigated by nontargeted ITEX/GC-MS. The extract was tested against three breast cancer cell lines (MCF7, MDA-MB-231, HS578T) and a healthy cell line (HUVEC) by the MTT assay, to assess its selective cytotoxicity. The phenolic profile of the extract revealed high levels of phenolic acids (5959.615 µg/mL extract), and the presence of flavanols (818.919 µg/mL extract). The diversity of the volatile compounds was rather low (nine compounds), whereas no glycoalkaloids were identified, only two alkaloid precursors (813.524 µg/mL extract). The extract proved to be cytotoxic towards all breast cancer cell lines (IC50 values between 139.1 and 356,1 µg/mL), with selectivity coefficients between 1.96 and 4.96 when compared with its toxicity on HUVECs. Based on these results we conclude that the exerted cytotoxic activity of the extract is due to its high polyphenolic content, whereas the lack of Solanaceae-specific glycoalkaloids might be responsible for its high selectivity against breast cancer cells in comparison with other extract obtained from wild Solanum species. However, further research is needed in order to assess the cytotoxicity of the individual compounds found in the extract, as well as the anti-tumor potential of the S. bulbocastanum tubers.

7.
Polymers (Basel) ; 14(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365499

RESUMO

Citrus essential oils possess many health-promoting benefits and properties of high interest in the food and agri-food sector. However, their large-scale application is limited by their sensitivity to environmental factors. Nanostructures containing citrus essential oils have been developed to overcome the high volatility and instability of essential oils with respect to temperature, pH, UV light, etc. Nanostructures could provide protection for essential oils and enhancement of their bioavailability and biocompatibility, as well as their biological properties. Nano-encapsulation is a promising method. The present review is mainly focused on methods developed so far for the nano-encapsulation of citrus essential oils, with emphasis on lipid-based (including liposomes, solid lipid nanoparticles, nanostructured lipid particles, and nano- and micro-emulsions) and polymer-based nanostructures. The physico-chemical characteristics of the obtained structures, as well as promising properties reported, with relevance for the food sector are also discussed.

8.
Materials (Basel) ; 15(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35888477

RESUMO

Green route is an economic, facile and eco-friendly method, employed for the synthesis of various types of nanoparticles, having it as a starting point biological entity, especially as a plant extract. The present study aims to obtain silver nanoparticles (AgNPs) starting from an ethanolic extract of Populi gemmae (Pg), by adjusting the reaction parameters. The morphological and structural characterization exhibited that both the reaction temperature and the concentration of metal salt, contributes to the obtaining of Pg-AgNPs with adjustable size and shape. The newly synthesized nanoparticles exhibited a good antibacterial activity on Gram-positive bacteria as well as antifungal activity. The in vitro antiproliferative activity of Pg-AgNPs was assessed on two different cancer cell lines (breast cancer cells-MCF7 and lung carcinoma epithelial cells-A549). Results have shown that the green-synthetized Pg-AgNPs_S2 (obtained at 60 °C, using AgNO3 of 5 M) induced a substantial decrease in tumor cell viability in a dose-dependent manner with an IC50 ranging from 5.03 to 5.07 µg/mL on A549 cell line and 3.24 to 4.93 µg/mL on MCF7 cell line.

9.
BMC Complement Med Ther ; 22(1): 74, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296309

RESUMO

PURPOSE: The aim of this study was to evaluate the antioxidant potential, antimicrobial activity, the in vitro anticancer effect (tested on MCF-7 breast cancer cell line), as well as the antiangiogenic and immunomodulatory potential of Populus nigra L. bud (Pg) extract collected from the western part of Romania. RESULTS: Populus nigra L. bud extract presents an important antioxidant activity, due to the rich phytochemical composition. Regarding the biological activity, results have shown that poplar bud extract presents a significant inhibitory activity against Gram-positive bacteria and a dose-dependent decrease of MCF-7 tumor cell viability with an IC50 of 66.26 µg/mL, while not affecting healthy cells. Phenomena of early apoptotic events at the maximum concentration tested (150 µg/mL) were detected by Annexin V-PI double staining. The extract induced G0/G1 phase cell cycle arrest. In addition, Pg extract showed antiangiogenic potential on the chorioallantoic membrane. Also, at the highest concentration (150 µg/mL), good tolerability and no signs of toxicity upon vascular plexus were observed. Moreover, in low concentrations, the Pg extract had immunomodulatory activity on primary human dendritic cells by upregulating IL-12 and IL-23 subunits. CONCLUSION: The study concludes that poplar bud extract elicited antioxidant activity, antitumor properties on the breast cancer cell line, followed by an antiangiogenic effect and an immunomodulatory potential on human primary dendritic cells. The biological activity of Populus nigra L. buds extract may open new directions of research on the topic addressed.


Assuntos
Anti-Infecciosos , Neoplasias da Mama , Populus , Anti-Infecciosos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Células MCF-7 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Populus/química
10.
Plants (Basel) ; 12(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36616202

RESUMO

Drastic growth in the amount of global food waste produced is observed every year, not only due to incessant population growth but also economic growth, lifestyle, and diet changes. As a result of their increasing health awareness, people are focusing more on healthy diets rich in fruits and vegetables. Thus, following worldwide fruit and vegetable consumption and their processing in various industries (juice, jams, wines, preserves), significant quantities of agro-industrial waste are produced (pomace, peels, seeds) that still contain high concentrations of bioactive compounds. Among bioactive compounds, anthocyanins have an important place, with their multiple beneficial effects on health; therefore, their extraction and recovery from food waste have become a topic of interest in recent years. Accordingly, this review aims to summarize the primary sources of anthocyanins from food waste and the novel eco-friendly extraction methods, such as pulsed electric field extraction, enzyme-assisted extraction, supercritical fluid extraction, pressurized liquid extraction, microwave-assisted extraction, and ultrasonic-assisted extraction. The advantages and disadvantages of these techniques will also be covered to encourage future studies and opportunities focusing on improving these extraction techniques.

11.
Antioxidants (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36670910

RESUMO

In this work, various concepts and features of anthocyanins have been comprehensively reviewed, taking the benefits of the scientific publications released mainly within the last five years. Within the paper, common topics such as anthocyanin chemistry and occurrence, including the biosynthesis of anthocyanins emphasizing the anthocyanin formation pathway, anthocyanin chemistry, and factors influencing the anthocyanins' stability, are covered in detail. By evaluating the recent in vitro and human experimental studies on the absorption and bioavailability of anthocyanins present in typical food and beverages, this review elucidates the significant variations in biokinetic parameters based on the model, anthocyanin source, and dose, allowing us to make basic assumptions about their bioavailability. Additionally, special attention is paid to other topics, such as the therapeutic effects of anthocyanins. Reviewing the recent in vitro, in vivo, and epidemiological studies on the therapeutic potential of anthocyanins against various diseases permits a demonstration of the promising efficacy of different anthocyanin sources at various levels, including the neuroprotective, cardioprotective, antidiabetic, antiobesity, and anticancer effects. Additionally, the studies on using plant-based anthocyanins as coloring food mediums are extensively investigated in this paper, revealing the successful use of anthocyanins in coloring various products, such as dietary and bakery products, mixes, juices, candies, beverages, ice cream, and jams. Lastly, the successful application of anthocyanins as prebiotic ingredients, the innovation potential of anthocyanins in industry, and sustainable sources of anthocyanins, including a quantitative research literature and database analysis, is performed.

12.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34681170

RESUMO

Liposome-based delivery systems have been studied and used more frequently in recent years due to their advantages, such as low toxicity, specificity, and the ability to protect the encapsulated substance from environmental factors, which could otherwise degrade the active compound and reduce its effectiveness. Given these benefits, many researchers have encapsulated polyphenols in liposomes, thus increasing their bioavailability and stability. Similarly, polyphenols encapsulated in liposomes are known to produce more substantial effects on targeted cells than unencapsulated polyphenols, while having minimal cytotoxicity in healthy cells. Although polyphenols play a role in preventing many types of disease and generally have beneficial effects on health, we solely focused on their chemopreventive effects on cancer through liposomes in this review. Our goal was to summarize the applicability and efficacy of liposomes encapsulated with different classes of polyphenols on several types of cancer, thus opening the opportunity for future studies based on these drug delivery systems.

13.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575899

RESUMO

Skin cancer represents any tumor development from the cutaneous structures within the epidermis, dermis or subcutaneous tissue, and is considered to be the most prevalent type of cancer. Compared to other types of cancer, skin cancer is proven to have a positive growth rate of prevalence and mortality. There are available various treatments, including chemotherapy, immunotherapy, radiotherapy and targeted therapy, but because of the multidrug resistance development, a low success has been registered. By this, the importance of studying naturally occurring compounds that are both safe and effective in the chemoprevention of skin cancer is emphasized. This review focuses on melanoma because it is the deadliest form of skin cancer, with a significantly increasing incidence in the last decades. As chemopreventive agents, we present polyphenols and their antioxidant activity, anti-inflammatory effect, their ability to balance the cell cycle and to induce apoptosis and their various other effects on skin melanoma. Besides chemoprevention, studies suggest that polyphenols can have treating abilities in some conditions. The limitations of using polyphenols are also pointed out, which are related to their poor bioavailability and stability, but as the technology is well developed, it is possible to augment the efficacy of polyphenols in the case of melanoma.


Assuntos
Quimioprevenção , Melanoma/tratamento farmacológico , Fenol/metabolismo , Polifenóis/química , Neoplasias Cutâneas/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Anticarcinógenos , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Autofagia , Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Imunossupressores , Imunoterapia , Melanoma/metabolismo , Camundongos , Metástase Neoplásica , Fenóis/farmacologia , Polifenóis/farmacologia , Pele/metabolismo , Neoplasias Cutâneas/metabolismo , Chá , Raios Ultravioleta , Melanoma Maligno Cutâneo
14.
Anticancer Agents Med Chem ; 21(2): 187-200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33109067

RESUMO

BACKGROUND: This study was designed as a continuation of a complex investigation about the phytochemical composition and biological activity of chamomile, parsley, and celery extracts against A375 human melanoma and dendritic cells. OBJECTIVE: The main aim was the evaluation of the antimicrobial potential of selected extracts as well as the in vitro anticancer activity against MCF7 human breast cancer cells. METHODS: In order to complete the picture regarding the phytochemical composition, molecular fingerprint was sketched out by the help of FTIR spectroscopy. The activity of two enzymes (acetylcholinesterase and butyrylcholinesterase) after incubation with the three extracts was spectrophotometrically assessed. The antimicrobial potential was evaluated by disk diffusion method. The in vitro anticancer potential against MCF7 human breast cancer cells was appraised by MTT, LDH, wound healing, cell cycle, DAPI, Annexin-V-PI assays. RESULTS: The results showed variations between the investigated extracts in terms of inhibitory activity against enzymes, such as acetyl- and butyrilcholinesterase. Chamomile and parsley extracts were active only against tested Gram-positive cocci, while all tested extracts displayed antifungal effects. Among the screened samples at the highest tested concentration, namely 60µg/mL, parsley was the most active extract in terms of reducing the viability of MCF7 - human breast adenocarcinoma cell line and inducing the release of lactate dehydrogenase. On the other hand, chamomile and celery extracts manifested potent anti-migratory effects. Furthermore, celery extract was the most active in terms of total apoptotic events, while chamomile extract induced the highest necrosis rate. CONCLUSION: The screened samples containing phytochemicals belonging in majority to the class of flavonoids and polyphenols can represent candidates for antimicrobial and anticancer agents.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Extratos Vegetais/farmacologia , Antibacterianos/química , Antifúngicos/química , Antineoplásicos Fitogênicos/química , Apium/química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Camomila/química , Feminino , Fungos/efeitos dos fármacos , Humanos , Células MCF-7 , Micoses/tratamento farmacológico , Petroselinum/química , Extratos Vegetais/química
15.
Nutr Cancer ; 73(4): 630-641, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32372670

RESUMO

Solanum chacoense (wild potato) is intensively used in breeding, its biochemical profile and putative human health-related traits being transferred into potato cultivars aimed for consumption. The goal of this study was to evaluate the biochemical profile and the anti-tumor potential of methanolic extracts obtained from S. chacoense leaves and tubers against three breast cancer cell lines in comparison to healthy endothelial cells (HUVEC). The biochemical profile of the extracts was determined by HPLC-PDA/-ESI+-MS and ITEX/GC-MS, the selective cytotoxicity by MTT assay whereas RT-qPCR was used to evaluate the expression of proliferation- and apoptosis-related genes. Both extracts proved to be rich in phenolic acids and volatile compounds, the leaf extract also containing glycoalkaloids. Both extracts proved to be cytotoxic for breast cancer cell lines, with IC50 values varying between 132.9 and 390.7 µg/ml. Both extracts had selective cytotoxicity against MCF7 cell line in comparison to HUVECs (selectivity coefficients >2.3). The treatment with the extracts induced overexpression of the pro-apoptotic gene BAX¸ down-regulation of the anti-apoptotic gene BCL-2 and the pro-proliferation genes NFkB, CCND1, and STAT3. Thus S. chacoense extracts proved to be rich in compounds with anticancer proprieties and are capable of inducing selective cytotoxicity on MCF7 cell line.


Assuntos
Neoplasias da Mama , Solanum tuberosum , Solanum , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Células Endoteliais , Feminino , Humanos , Extratos Vegetais/farmacologia
16.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348921

RESUMO

Origanum vulgare L. is a widely used aromatic plant, especially due to its content in essential oil, mainly rich in carvacrol and thymol. The ethnopharmacological uses of Origanum vulgare L. essential oil (OEO) comprise digestive, respiratory, or dermatological disorders. The review focuses on the increasing number of recent studies investigating several biological activities of OEO. The bioactivities are in tight relation to the phytochemical profile of the essential oil, and also depend on taxonomic, climatic, and geographical characteristics of the plant material. The antibacterial, antifungal, antiparasitic, antioxidant, anti-inflammatory, antitumor, skin disorders beneficial effects, next to antihyperglycemic and anti-Alzheimer activities were reported and confirmed in multiple studies. Moreover, recent studies indicate a positive impact on skin disorders of OEO formulated as nanocarrier systems in order to improve its bioavailability and, thus, enhancing its therapeutic benefits. The review brings an up to date regarding the phytochemistry and bioactivity of Origanum vulgare L. essential oil, underlining also the most successful pharmaceutical formulation used for skin disorders.


Assuntos
Óleos Voláteis/farmacologia , Origanum/química , Compostos Fitoquímicos/farmacologia , Dermatopatias/tratamento farmacológico , Animais , Humanos
17.
Int J Mol Sci ; 21(19)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33028024

RESUMO

It is known and accepted that the gut microbiota composition of an organism has an impact on its health. Many studies deal with this topic, the majority discussing gastrointestinal health. Adenomatous colon polyps have a high prevalence as colon cancer precursors, but in many cases, they are hard to diagnose in their early stages. Gut microbiota composition correlated with the presence of adenomatous colon polyps may be a noninvasive and efficient tool for diagnosis with a high impact on human wellbeing and favorable health care costs. This review is meant to analyze the gut microbiota correlated with the presence of adenomatous colon polyps as the first step for early diagnosis, prophylaxis, and treatment.


Assuntos
Pólipos Adenomatosos/microbiologia , Neoplasias do Colo/diagnóstico , Pólipos do Colo/microbiologia , Microbioma Gastrointestinal/genética , Pólipos Adenomatosos/diagnóstico , Pólipos Adenomatosos/genética , Colo/microbiologia , Colo/patologia , Doenças do Colo/diagnóstico , Doenças do Colo/genética , Doenças do Colo/microbiologia , Neoplasias do Colo/genética , Neoplasias do Colo/microbiologia , Pólipos do Colo/diagnóstico , Pólipos do Colo/genética , Colonoscopia , Humanos
18.
Pharmaceutics ; 12(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882983

RESUMO

Black chokeberry fruits possess a wide range of biological activities, among which the most important that are frequently mentioned in the literature are their antioxidant, anti-inflammatory, anti-proliferative, and antimicrobial properties. The present paper reports, for the first time, the encapsulation of the ethanolic extract of Aronia melanocarpa L. fruits into two mesoporous silica-type matrices (i.e., pristine MCM-41 and MCM-41 silica decorated with zinc oxide nanoparticles). The aim of this work was to evaluate the antiradicalic capacity, the antimicrobial potential, and the effects on the cell viability on a cancer cell line (i.e., A375 human melanoma cell line) versus normal cells (i.e., HaCaT human keratinocytes) of black chokeberry extract loaded on silica-type matrices in comparison to that of the extract alone. The ethanolic polyphenolic extract obtained by conventional extraction was characterized by high-performance liquid chromatography with a photodiode array detector (HPLC-PDA) and spectrophotometric methods. The extract was found to contain high amounts of polyphenols and flavonoids, as well as good radical scavenging activity. The extract-loaded materials were investigated by Fourier transform infrared spectroscopy, N2 adsorption-desorption isotherms, thermal analysis, and radical scavenger activity on solid samples. The black chokeberry extract, both free and loaded onto mesoporous silica-type matrices, exhibited a significant antioxidant capacity. Antibacterial activity was recorded only for Gram-positive bacteria, with a more potent antibacterial effect being observed for the extract loaded onto the ZnO-modified MCM-41 silica-type support than for the free extract, probably due to the synergistic effect of the ZnO nanoparticles that decorate the pore walls of silica. The cellular viability test (i.e., MTT assay) showed dose- and time-dependent activity regarding the melanoma cell line. The healthy cells were less affected than the cancer cells, with all tested samples showing good cytocompatibility at doses of up to 100 µg/mL. Improved in vitro antiproliferative and antimigratory (i.e., scratch assay) potential was demonstrated through the loading of black chokeberry extract into mesoporous silica-type matrices, and the screened samples exhibited low selectivity against the tested non-tumor cell line. Based on presented results, one can conclude that mesoporous silica-type matrices are good hosts for black chokeberry extract, increasing its antioxidant, antibacterial (on the screened strains), and in vitro antitumor (on the screened cell line) properties.

19.
Nanomaterials (Basel) ; 10(8)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824660

RESUMO

In this study, the antibacterial activity of cerium oxide nanoparticles on two Gram-negative and three Gram-positive foodborne pathogens was investigated. CeO2 nanoparticles (CeO2 nps) were synthesized by a Wet Chemical Synthesis route, using the precipitation method and the Simultaneous Addition of reactants (WCS-SimAdd). The as-obtained precursor powders were investigated by thermal analysis (TG-DTA), to study their decomposition process and to understand the CeO2 nps formation. The composition, structure, and morphology of the thermally treated sample were investigated by FTIR, Raman spectroscopy, X-ray diffraction, TEM, and DLS. The cubic structure and average particle size ranging between 5 and 15 nm were evidenced. Optical absorption measurements (UV-Vis) reveal that the band gap of CeO2 is 2.61 eV, which is smaller than the band gap of bulk ceria. The antioxidant effect of CeO2 nps was determined, and the antibacterial test was carried out both in liquid and on solid growth media against five pathogenic microorganisms, namely Escherichia coli, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, and Bacillus cereus. Cerium oxide nanoparticles showed growth inhibition toward all five pathogens tested with notable results. This paper highlights the perspectives for the synthesis of CeO2 nps with controlled structural and morphological characteristics and enhanced antibacterial properties, using a versatile and low-cost chemical solution method.

20.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775230

RESUMO

Cannabis sativa L. is a plant long used for its textile fibers, seed oil, and oleoresin with medicinal and psychoactive properties. It is the main source of phytocannabinoids, with over 100 compounds detected so far. In recent years, a lot of attention has been given to the main phytochemicals present in Cannabis sativa L., namely, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). Compared to THC, CBD has non-psychoactive effects, an advantage for clinical applications of anti-tumor benefits. The review is designed to provide an update regarding the multi-target effects of CBD in different types of cancer. The main focus is on the latest in vitro and in vivo studies that present data regarding the anti-proliferative, pro-apoptotic, cytotoxic, anti-invasive, anti-antiangiogenic, anti-inflammatory, and immunomodulatory properties of CBD together with their mechanisms of action. The latest clinical evidence of the anticancer effects of CBD is also outlined. Moreover, the main aspects of the pharmacological and toxicological profiles are given.


Assuntos
Antineoplásicos/uso terapêutico , Canabidiol/uso terapêutico , Cannabis/química , Neoplasias/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Humanos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA