Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 290(46): 27511-23, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26405040

RESUMO

The RAVE complex (regulator of the H(+)-ATPase of vacuolar and endosomal membranes) is required for biosynthetic assembly and glucose-stimulated reassembly of the yeast vacuolar H(+)-ATPase (V-ATPase). Yeast RAVE contains three subunits: Rav1, Rav2, and Skp1. Rav1 is the largest subunit, and it binds Rav2 and Skp1 of RAVE; the E, G, and C subunits of the V-ATPase peripheral V1 sector; and Vph1 of the membrane Vo sector. We identified Rav1 regions required for interaction with its binding partners through deletion analysis, co-immunoprecipitation, two-hybrid assay, and pulldown assays with expressed proteins. We find that Skp1 binding requires sequences near the C terminus of Rav1, V1 subunits E and C bind to a conserved region in the C-terminal half of Rav1, and the cytosolic domain of Vph1 binds near the junction of the Rav1 N- and C-terminal halves. In contrast, Rav2 binds to the N-terminal domain of Rav1, which can be modeled as a double ß-propeller. Only the V1 C subunit binds to both Rav1 and Rav2. Using GFP-tagged RAVE subunits in vivo, we demonstrate glucose-dependent association of RAVE with the vacuolar membrane, consistent with its role in glucose-dependent V-ATPase assembly. It is known that V1 subunit C localizes to the V1-Vo interface in assembled V-ATPase complexes and is important in regulated disassembly of V-ATPases. We propose that RAVE cycles between cytosol and vacuolar membrane in a glucose-dependent manner, positioning V1 and V0 subcomplexes and orienting the V1 C subunit to promote assembly.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sítios de Ligação , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Técnicas do Sistema de Duplo-Híbrido , ATPases Vacuolares Próton-Translocadoras/química
2.
Mol Biol Cell ; 25(8): 1251-62, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24523285

RESUMO

Vacuolar proton-translocating ATPases (V-ATPases) are highly conserved, ATP-driven proton pumps regulated by reversible dissociation of its cytosolic, peripheral V1 domain from the integral membrane V(o) domain. Multiple stresses induce changes in V1-V(o) assembly, but the signaling mechanisms behind these changes are not understood. Here we show that certain stress-responsive changes in V-ATPase activity and assembly require the signaling lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). V-ATPase activation through V1-V(o) assembly in response to salt stress is strongly dependent on PI(3,5)P2 synthesis. Purified V(o) complexes preferentially bind to PI(3,5)P2 on lipid arrays, suggesting direct binding between the lipid and the membrane sector of the V-ATPase. Increasing PI(3,5)P2 levels in vivo recruits the N-terminal domain of V(o)-sector subunit Vph1p from cytosol to membranes, independent of other subunits. This Vph1p domain is critical for V1-V(o) interaction, suggesting that interaction of Vph1p with PI(3,5)P2-containing membranes stabilizes V1-V(o) assembly and thus increases V-ATPase activity. These results help explain the previously described vacuolar acidification defect in yeast fab1 and vac14 mutants and suggest that human disease phenotypes associated with PI(3,5)P2 loss may arise from compromised V-ATPase stability and regulation.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/biossíntese , Proteínas de Membrana/genética , Pressão Osmótica , Fosfatos de Fosfatidilinositol/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Cloreto de Sódio/metabolismo
3.
Mol Biol Cell ; 25(3): 356-67, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307682

RESUMO

The regulator of ATPase of vacuoles and endosomes (RAVE) complex is implicated in vacuolar H(+)-translocating ATPase (V-ATPase) assembly and activity. In yeast, rav1 mutants exhibit a Vma(-) growth phenotype characteristic of loss of V-ATPase activity only at high temperature. Synthetic genetic analysis identified mutations that exhibit a full, temperature-independent Vma(-) growth defect when combined with the rav1 mutation. These include class E vps mutations, which compromise endosomal sorting. The synthetic Vma(-) growth defect could not be attributed to loss of vacuolar acidification in the double mutants, as there was no vacuolar acidification in the rav1 mutant. The yeast V-ATPase a subunit is present as two isoforms, Stv1p in Golgi and endosomes and Vph1p in vacuoles. Rav1p interacts directly with the N-terminal domain of Vph1p. STV1 overexpression suppressed the growth defects of both rav1 and rav1vph1, and allowed RAVE-independent assembly of active Stv1p-containing V-ATPases in vacuoles. Mutations causing synthetic genetic defects in combination with rav1 perturbed the normal localization of Stv1-green fluorescent protein. We propose that RAVE is necessary for assembly of Vph1-containing V-ATPase complexes but not Stv1-containing complexes. Synthetic Vma(-) phenotypes arise from defects in Vph1p-containing complexes caused by rav1, combined with defects in Stv1p-containing V-ATPases caused by the second mutation. Thus RAVE is the first isoform-specific V-ATPase assembly factor.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , ATPases Vacuolares Próton-Translocadoras/biossíntese , Vacúolos/metabolismo
4.
J Vis Exp ; (74)2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23629151

RESUMO

Vacuolar and cytosolic pH are highly regulated in yeast cells and occupy a central role in overall pH homeostasis. We describe protocols for ratiometric measurement of pH in vivo using pH-sensitive fluorophores localized to the vacuole or cytosol. Vacuolar pH is measured using BCECF, which localizes to the vacuole in yeast when introduced into cells in its acetoxymethyl ester form. Cytosolic pH is measured with a pH-sensitive GFP expressed under control of a yeast promoter, yeast pHluorin. Methods for measurement of fluorescence ratios in yeast cell suspensions in a fluorimeter are described. Through these protocols, single time point measurements of pH under different conditions or in different yeast mutants have been compared and changes in pH over time have been monitored. These methods have also been adapted to a fluorescence plate reader format for high-throughput experiments. Advantages of ratiometric pH measurements over other approaches currently in use, potential experimental problems and solutions, and prospects for future use of these techniques are also described.


Assuntos
Citosol/química , Fluoresceínas/química , Corantes Fluorescentes/química , Fluorometria/métodos , Saccharomyces cerevisiae/química , Vacúolos/química , Citosol/metabolismo , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Vacúolos/metabolismo
5.
Eukaryot Cell ; 11(3): 282-91, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22210831

RESUMO

Hyperosmotic stress activates an array of cellular detoxification mechanisms, including the high-osmolarity glycerol (HOG) pathway. We report here that vacuolar H(+)-ATPase (V-ATPase) activity helps provide osmotic tolerance in Saccharomyces cerevisiae. V-ATPase subunit genes exhibit complex haploinsufficiency interactions with HOG pathway components. vma mutants lacking V-ATPase function are sensitive to high concentrations of salt and exhibit Hog1p activation even at low salt concentrations, as demonstrated by phosphorylation of Hog1p, a shift in Hog1-green fluorescent protein localization, transcriptional activation of a subset of HOG pathway effectors, and transcriptional inhibition of parallel mitogen-activated protein kinase pathway targets. vma2Δ hog1Δ and vma3Δ pbs2Δ double mutants have a synthetic growth phenotype, poor salt tolerance, and an aberrant, hyper-elongated morphology on solid media, accompanied by activation of a filamentous response element-LacZ construct, indicating cross talk into the filamentous growth pathway. Vacuoles isolated from wild-type cells briefly exposed to salt show higher levels of V-ATPase activity, and Na(+)/H(+) exchange in isolated vacuolar vesicles suggests a biochemical basis for the genetic interactions observed. V-ATPase activity is upregulated during salt stress by increasing assembly of the catalytic V(1) sector with the membrane-bound V(o) sector. Together, these data suggest that the V-ATPase acts in parallel with the HOG pathway in order to mediate salt detoxification.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais/fisiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Adaptação Fisiológica , Genes Reporter , Glicerol/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Concentração Osmolar , Pressão Osmótica , Fosforilação , Proteínas de Saccharomyces cerevisiae/genética , Tolerância ao Sal/genética , Transcrição Gênica , ATPases Vacuolares Próton-Translocadoras/genética
6.
J Biol Chem ; 285(31): 23771-8, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20511227

RESUMO

Vacuolar proton-translocating ATPases (V-ATPases) are responsible for organelle acidification in all eukaryotic cells. The yeast V-ATPase, known to be regulated by reversible disassembly in response to glucose deprivation, was recently reported to be regulated by extracellular pH as well (Padilla-López, S., and Pearce, D. A. (2006) J. Biol. Chem. 281, 10273-10280). Consistent with those results, we find 57% higher V-ATPase activity in vacuoles isolated after cell growth at extracellular pH of 7 than after growth at pH 5 in minimal medium. Remarkably, under these conditions, the V-ATPase also becomes largely insensitive to reversible disassembly, maintaining a low vacuolar pH and high levels of V(1) subunit assembly, ATPase activity, and proton pumping during glucose deprivation. Cytosolic pH is constant under these conditions, indicating that the lack of reversible disassembly is not a response to altered cytosolic pH. We propose that when alternative mechanisms of vacuolar acidification are not available, maintaining V-ATPase activity becomes a priority, and the pump is not down-regulated in response to energy limitation. These results also suggest that integrated pH and metabolic inputs determine the final assembly state and activity of the V-ATPase.


Assuntos
Fungos/enzimologia , Regulação Enzimológica da Expressão Gênica , ATPases Vacuolares Próton-Translocadoras/química , Membrana Celular/enzimologia , Citosol/enzimologia , Citosol/metabolismo , Técnica Indireta de Fluorescência para Anticorpo/métodos , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Biológicos , Mutação , Prótons , Fatores de Tempo , Vacúolos/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA