Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39022908

RESUMO

Complex hydrodynamics abound in natural streams, yet the selective pressures these impose upon different size classes of fish are not well understood. Attached vortices are produced by relatively large objects that block freestream flow, which fish routinely utilize for flow refuging. To test how flow refuging and the potential harvesting of energy (as seen in Kármán gaiting) vary across size classes in rainbow trout (Oncorhynchus mykiss; fingerling, 8 cm; parr, 14 cm; adult, 22 cm; n=4 per size class), we used a water flume (4100 l; freestream flow at 65 cm s-1) and created vortices using 45 deg wing dams of varying size (small, 15 cm; medium, 31 cm; large, 48 cm). We monitored microhabitat selection and swimming kinematics of individual trout and measured the flow field in the wake of wing dams using time-resolved particle image velocimetry (PIV). Trout of each size class preferentially swam in vortices rather than the freestream, but the capacity to flow refuge varied according to the ratio of vortex width to fish length (WV:LF). Consistent refuging behavior was exhibited when WV:LF≥1.5. All size classes exhibited increased wavelength and Strouhal number and decreased tailbeat frequency within vortices compared with freestream, suggesting that swimming in vortices requires less power output. In 17% of the trials, fish preferentially swam in a manner that suggests energy harvesting from the shear layer. Our results can inform efforts toward riparian restoration and fishway design to improve salmonid conservation.


Assuntos
Tamanho Corporal , Oncorhynchus mykiss , Natação , Animais , Oncorhynchus mykiss/fisiologia , Natação/fisiologia , Fenômenos Biomecânicos , Hidrodinâmica , Reologia , Movimentos da Água , Rios , Ecossistema
2.
Evolution ; 78(5): 894-905, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315570

RESUMO

Diverse clades of fishes adapted to feeding on the benthos repeatedly converge on steep craniofacial profiles and shorter, wider heads. But in an incipient radiation, to what extent is this morphological evolution measurable and can we distinguish the relative genetic vs. plastic effects? We use the Trinidadian guppy (Poecilia reticulata) to test the repeatability of adaptation and the alignment of genetic and environmental effects shaping poecilid craniofacial morphology. We compare wild-caught and common garden lab-reared fish to quantify the genetic and plastic components of craniofacial morphology across 4 populations from 2 river drainage systems (n = 56 total). We first use micro-computed tomography to capture 3D morphology, then place both landmarks and semilandmarks to perform size-corrected 3D morphometrics and quantify shape space. We find a measurable, significant, and repeatable divergence in craniofacial shape between high-predation invertivore and low-predation detritivore populations. As predicted from previous examples of piscine adaptive trophic divergence, we find increases in head slope and craniofacial compression among the benthic detritivore foragers. Furthermore, the effects of environmental plasticity among benthic detritivores produce exaggerated craniofacial morphological change along a parallel axis to genetic morphological adaptation from invertivore ancestors. Overall, many of the major patterns of benthic-limnetic craniofacial evolution appear convergent among disparate groups of teleost fishes.


Assuntos
Evolução Biológica , Poecilia , Crânio , Animais , Poecilia/anatomia & histologia , Poecilia/genética , Poecilia/fisiologia , Crânio/anatomia & histologia , Microtomografia por Raio-X , Cadeia Alimentar , Comportamento Predatório
3.
Integr Comp Biol ; 63(3): 843-859, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37422435

RESUMO

To understand the complexities of morphological evolution, we must understand the relationships between genes, morphology, performance, and fitness in complex traits. Genomicists have made tremendous progress in finding the genetic basis of many phenotypes, including a myriad of morphological characters. Similarly, field biologists have greatly advanced our understanding of the relationship between performance and fitness in natural populations. However, the connection from morphology to performance has primarily been studied at the interspecific level, meaning that in most cases we lack a mechanistic understanding of how evolutionarily relevant variation among individuals affects organismal performance. Therefore, functional morphologists need methods that will allow for the analysis of fine-grained intraspecific variation in order to close the path from genes to fitness. We suggest three methodological areas that we believe are well suited for this research program and provide examples of how each can be applied within fish model systems to build our understanding of microevolutionary processes. Specifically, we believe that structural equation modeling, biological robotics, and simultaneous multi-modal functional data acquisition will open up fruitful collaborations among biomechanists, evolutionary biologists, and field biologists. It is only through the combined efforts of all three fields that we will understand the connection between evolution (acting at the level of genes) and natural selection (acting on fitness).


Assuntos
Evolução Biológica , Condicionamento Físico Animal , Animais , Seleção Genética , Fenótipo , Peixes
4.
J Morphol ; 281(8): 956-969, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32557795

RESUMO

What is the functional effect of prolonged development? By controlling for size, we quantify first-feeding performance and hydrodynamics of zebrafish and guppy offspring (5 ± 0.5 mm in length), which differ fivefold in developmental time and twofold in ontogenetic state. By manipulating water viscosity, we control the hydrodynamic regime, measured as Reynolds number. We predicted that if feeding performance were strictly the result of hydrodynamics, and not development, feeding performance would scale with Reynolds number. We find that guppy offspring successfully feed at much greater distances to prey (1.0 vs. 0.2 mm) and with higher capture success (90 vs. 20%) compared with zebrafish larvae, and that feeding performance was not a result of Reynolds number alone. Flow visualization shows that zebrafish larvae produce a bow wave ~0.2 mm in length, and that the flow field produced during suction does not extend beyond this bow wave. Due to well-developed oral jaw protrusion, the similar-sized suction field generated by guppy offspring extends beyond the horizon of their bow wave, leading to successful prey capture from greater distances. These findings suggest that prolonged development and increased ontogenetic state provides first-feeding fish time to escape the pervasive hydrodynamic constraints (bow wave) of being small.


Assuntos
Comportamento Alimentar/fisiologia , Hidrodinâmica , Peixe-Zebra/crescimento & desenvolvimento , Animais , Fenômenos Biomecânicos , Osso e Ossos/anatomia & histologia , Feminino , Larva/crescimento & desenvolvimento , Masculino , Modelos Biológicos , Comportamento Predatório , Fatores de Tempo , Viscosidade
5.
J Exp Biol ; 215(Pt 21): 3693-702, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22855612

RESUMO

Wing morphology correlates with flight performance and ecology among adult birds, yet the impact of wing development on aerodynamic capacity is not well understood. Recent work using chukar partridge (Alectoris chukar), a precocial flier, indicates that peak coefficients of lift and drag (C(L) and C(D)) and lift-to-drag ratio (C(L):C(D)) increase throughout ontogeny and that these patterns correspond with changes in feather microstructure. To begin to place these results in a comparative context that includes variation in life-history strategy, we used a propeller and force-plate model to study aerodynamic force production across a developmental series of the altricial-flying mallard (Anas platyrhynchos). We observed the same trend in mallards as reported for chukar in that coefficients of vertical (C(V)) and horizontal force (C(H)) and C(V):C(H) ratio increased with age, and that measures of gross-wing morphology (aspect ratio, camber and porosity) in mallards did not account for intraspecific trends in force production. Rather, feather microstructure (feather unfurling, rachis width, feather asymmetry and barbule overlap) all were positively correlated with peak C(V):C(H). Throughout ontogeny, mallard primary feathers became stiffer and less transmissive to air at both macroscale (between individual feathers) and microscale (between barbs/barbules/barbicels) levels. Differences between species were manifest primarily as heterochrony of aerodynamic force development. Chukar wings generated measurable aerodynamic forces early (<8 days), and improved gradually throughout a 100 day ontogenetic period. Mallard wings exhibited delayed aerodynamic force production until just prior to fledging (day 60), and showed dramatic improvement within a condensed 2-week period. These differences in timing may be related to mechanisms of escape used by juveniles, with mallards swimming to safety and chukar flap-running up slopes to take refuge. Future comparative work should test whether the need for early onset of aerodynamic force production in the chukar, compared with delayed, but rapid, change in the mallard wing, leads to a limited repertoire of flight behavior in adult chukar compared with mallards.


Assuntos
Patos/fisiologia , Plumas/anatomia & histologia , Plumas/fisiologia , Voo Animal/fisiologia , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia , Animais , Fenômenos Biomecânicos , Patos/anatomia & histologia , Metabolismo Energético , Modelos Biológicos
6.
J Exp Biol ; 215(Pt 21): 3703-10, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22855613

RESUMO

Precocial development, in which juveniles are relatively mature at hatching or birth, is more common among vertebrates than altricial development, and is likely to be the basal condition. Altricial development characterizes many birds and mammals and is generally viewed as an alternate strategy, promoting fast growth rates, short developmental periods and relatively poor locomotor performance prior to attaining adult size. Many aquatic birds such as Anseriformes (ducks, geese and swans), Charadriformes (gulls and terns) and Gruiformes (rails) undergo distinctive developmental trajectories, in that hatchlings are able to run and swim the day they hatch, yet they do not begin to fly until fully grown. We hypothesized that there should be tradeoffs in apportioning bone and muscle mass to the hindlimb and forelimb that could account for these patterns in locomotor behavior within the mallard (Anas platyrhynchos). Growth of the musculoskeletal system in the forelimbs and hindlimbs was measured and compared with maximal aquatic and terrestrial sprint speeds and aerial descent rates throughout the 2-month-long mallard ontogenetic period. At 30 days post hatching, when body mass is 50% of adult values, hindlimb muscle mass averages 90% and forelimb muscle mass averages 10% of adult values; similarly, bone growth (length and width) in the hindlimbs and forelimbs averages 90 and 60% of adult values, respectively. The attainment of mallard locomotor performance parallels the morphological maturation of forelimb and hindlimb morphometrics - hindlimb performance initiates just after hatching at a relatively high level (~50% adult values) and gradually improves throughout the first month of development, while forelimb performance is relatively non-existent at hatching (~10% adult values), experiencing delayed and dramatic improvement in function, and maturing at the time of fledging. This divergence in ontogenetic strategy between locomotor modules could allow developing Anseriformes to inhabit aquatic, predator-reduced refuges without relying on flight for juvenile escape. Furthermore, by freeing the forelimbs from locomotor demand early in ontogeny, Anseriformes may bypass the potential canalization (i.e. retention) of juvenile form present within their precocial hindlimbs, to dramatically depart in forelimb form and function in the adult.


Assuntos
Patos/anatomia & histologia , Patos/crescimento & desenvolvimento , Voo Animal/fisiologia , Membro Anterior/crescimento & desenvolvimento , Membro Posterior/crescimento & desenvolvimento , Desenvolvimento Musculoesquelético , Natação/fisiologia , Animais , Patos/fisiologia , Membro Anterior/anatomia & histologia , Membro Anterior/fisiologia , Membro Posterior/anatomia & histologia , Membro Posterior/fisiologia , Locomoção , Asas de Animais/anatomia & histologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA