Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Space Sci Rev ; 218(4): 36, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664863

RESUMO

This review summarizes the current state of research aiming at a description of the global heliosphere using both analytical and numerical modeling efforts, particularly in view of the overall plasma/neutral flow and magnetic field structure, and its relation to energetic neutral atoms. Being part of a larger volume on current heliospheric research, it also lays out a number of key concepts and describes several classic, though still relevant early works on the topic. Regarding numerical simulations, emphasis is put on magnetohydrodynamic (MHD), multi-fluid, kinetic-MHD, and hybrid modeling frameworks. Finally, open issues relating to the physical relevance of so-called "croissant" models of the heliosphere, as well as the general (dis)agreement of model predictions with observations are highlighted and critically discussed.

2.
Sci Adv ; 8(2): eabm4234, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35020420

RESUMO

Jupiter hosts the most hazardous radiation belts of our solar system that, besides electrons and protons, trap an undetermined mix of heavy ions. The details of this mix are critical to resolve because they can reveal the role of Jupiter's moons relative to other less explored energetic ion sources. Here, we show that with increasing energy and in the vicinity of Jupiter's moon Amalthea, the belts' ion composition transitions from sulfur- to oxygen-dominated due to a local source of ≳50 MeV/nucleon oxygen. Contrary to Earth's and Saturn's radiation belts, where their most energetic ions are supplied through atmospheric and ring interactions with externally accelerated cosmic rays, Jupiter's magnetosphere powers this oxygen source internally. The underlying source mechanism, involving either Jovian ring spallation by magnetospheric sulfur or stochastic oxygen heating by low-frequency plasma waves, puts Jupiter's ion radiation belt in the same league with that of astrophysical particle accelerators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA