Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724015

RESUMO

Antiparasitic drug development stands as a critical endeavor in combating infectious diseases which, by affecting the well-being of humans, animals, and the environment, pose significant global health challenges. In a scenario where conventional pharmacological interventions have proven inadequate, the One Health approach, which emphasizes interdisciplinary collaboration and holistic solutions, emerges as a vital strategy. By advocating for the integration of One Health principles into the R&D pharmaceutical pipeline, this Perspective promotes green chemistry methodologies to foster the development of environmentally friendly antiparasitic drugs for both human and animal health. Moreover, it highlights the urgent need to address vector-borne parasitic diseases (VBPDs) within the context of One Health-driven sustainable development, underscoring the pivotal role of medicinal chemists in driving transformative change. Aligned with the Sustainable Development Goals (SDGs) and the European Green Deal, this Perspective explores the application of the 12 Principles of Green Chemistry as a systematic framework to guide drug discovery and production efforts in the context of VBPD. Through interdisciplinary collaboration and a constant commitment to sustainability, the field can overcome the challenges posed by VBPD while promoting global and environmental responsibility. Serving as a call to action, scientists are urged to integrate One Health concepts and green chemistry principles into routine drug development practices, thereby paving the way for a more sustainable R&D pharmaceutical pipeline for antiparasitic drugs.

2.
Chem Commun (Camb) ; 60(7): 870-873, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38164786

RESUMO

Herein, we present the first application of target-directed dynamic combinatorial chemistry (tdDCC) to the whole complex of the highly dynamic transmembrane, energy-coupling factor (ECF) transporter ECF-PanT in Streptococcus pneumoniae. In addition, we successfully employed the tdDCC technique as a hit-identification and -optimization strategy that led to the identification of optimized ECF inhibitors with improved activity. We characterized the best compounds regarding cytotoxicity and performed computational modeling studies on the crystal structure of ECF-PanT to rationalize their binding mode. Notably, docking studies showed that the acylhydrazone linker is able to maintain the crucial interactions.


Assuntos
Proteínas de Bactérias , Streptococcus pneumoniae , Modelos Moleculares , Proteínas de Bactérias/química
4.
Commun Biol ; 6(1): 1182, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985798

RESUMO

The energy-coupling factor (ECF) transporters are a family of transmembrane proteins involved in the uptake of vitamins in a wide range of bacteria. Inhibition of the activity of these proteins could reduce the viability of pathogens that depend on vitamin uptake. The central role of vitamin transport in the metabolism of bacteria and absence from humans make the ECF transporters an attractive target for inhibition with selective chemical probes. Here, we report on the identification of a promising class of inhibitors of the ECF transporters. We used coarse-grained molecular dynamics simulations on Lactobacillus delbrueckii ECF-FolT2 and ECF-PanT to profile the binding mode and mechanism of inhibition of this novel chemotype. The results corroborate the postulated mechanism of transport and pave the way for further drug-discovery efforts.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias , Humanos , Proteínas de Bactérias/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bactérias/metabolismo , Vitaminas/metabolismo , Simulação de Dinâmica Molecular
5.
ChemMedChem ; 18(19): e202300346, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37718320

RESUMO

Discovery of novel antibiotics needs multidisciplinary approaches to gain target enzyme and bacterial activities while aiming for selectivity over mammalian cells. Here, we report a multiparameter optimisation of a fragment-like hit that was identified through a structure-based virtual-screening campaign on Escherichia coli IspE crystal structure. Subsequent medicinal-chemistry design resulted in a novel class of E. coli IspE inhibitors, exhibiting activity also against the more pathogenic bacteria Pseudomonas aeruginosa and Acinetobacter baumannii. While cytotoxicity remains a challenge for the series, it provides new insights on the molecular properties for balancing enzymatic target and bacterial activities simultaneously as well as new starting points for the development of IspE inhibitors with a predicted new mode of action.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Animais , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Mamíferos
6.
ChemMedChem ; 18(20): e202300422, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37706617

RESUMO

Click chemistry is universally recognized as a powerful strategy for the fast and precise assembly of diverse building blocks. Targeted Protein Degradation (TPD) is a new therapeutic modality based on heterobifunctional small-molecule degraders that provides new opportunities to medicinal chemists dealing with undruggable targets and incurable diseases. Here, we highlight how very recently the TPD field and that of click chemistry have merged, opening up the possibility for fine-tuning the properties of a degrader, chemically assembled through a "click" synthesis. By reviewing concrete examples, we want to provide the reader with the insight that the application of click and bioorthogonal chemistry in the TDP field may be a winning combination.


Assuntos
Química Click , Proteólise
7.
ChemMedChem ; 18(19): e202300344, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37485831

RESUMO

The Frontiers in Medicinal Chemistry (FiMC) is the largest international Medicinal Chemistry conference in the German speaking area and took place from April 3rd to 5th 2023 in Vienna (Austria). Fortunately, after being cancelled in 2020 and two years (2021-2022) of entirely virtual meetings, due to the COVID-19 pandemic, the FiMC could be held in a face-to-face format again. Organized by the Division of Medicinal Chemistry of the German Chemical Society (GDCh), the Division of Pharmaceutical and Medicinal Chemistry of the German Pharmaceutical Society (DPhG), together with the Division of Medicinal Chemistry of the Austrian Chemical Society (GÖCH), the Austrian Pharmaceutical Society (ÖPhG), and a local organization committee from the University of Vienna headed by Thierry Langer, the meeting brought together 260 participants from 21 countries. The program included 38 lectures by leading scientists from industry and academia as well as early career investigators. Moreover, 102 posters were presented in two highly interactive poster sessions.


Assuntos
Química Farmacêutica , Pandemias , Humanos , Áustria
8.
ChemMedChem ; 17(21): e202200419, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36198574

RESUMO

The Frontiers in Medicinal Chemistry (FiMC) meeting, which represents the largest international medicinal chemistry conference in Germany, took place from March 14th to 16th 2022 in a fully virtual format. Organized by the Division of Medicinal Chemistry of the German Chemical Society (GDCh) together with the Division of Pharmaceutical & Medicinal Chemistry of the German Pharmaceutical Society (DPhG) and a "local" organization committee from the University of Freiburg headed by Manfred Jung, the meeting brought together 271 participants from around 20 countries. The program included 33 lectures by leading scientists from industry and academia as well as early career investigators. 67 posters were presented in two poster sessions and with over 20.000 poster abstract downloads. The general organization and the time-shift function were very much appreciated as demonstrated by almost 600 on-demand contents retrieved. The online format fitted perfectly to bring together medicinal chemists from academia and industry across the globe.


Assuntos
Química Farmacêutica , Humanos , Alemanha
9.
J Med Chem ; 65(13): 8869-8880, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35709475

RESUMO

Here, we report on a potent class of substituted ureidothiophenes targeting energy-coupling factor (ECF) transporters, an unexplored target that is not addressed by any antibiotic in the market. Since the ECF module is crucial for the vitamin transport mechanism, the prevention of substrate uptake should ultimately lead to cell death. By utilizing a combination of virtual and functional whole-cell screening of our in-house library, the membrane-bound protein mediated uptake of folate could be effectively inhibited. Structure-based optimization of our hit yielded low-micromolar inhibitors, whereby the most active compounds showed in addition potent antimicrobial activities against a panel of clinically relevant Gram-positive pathogens without significant cytotoxic effects.


Assuntos
Proteínas de Bactérias , Proteínas de Membrana , Proteínas de Bactérias/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Ácido Fólico/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares
10.
Int J Mol Sci ; 23(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269783

RESUMO

Herein, we report a novel whole-cell screening assay using Lactobacillus casei as a model microorganism to identify inhibitors of energy-coupling factor (ECF) transporters. This promising and underexplored target may have important pharmacological potential through modulation of vitamin homeostasis in bacteria and, importantly, it is absent in humans. The assay represents an alternative, cost-effective and fast solution to demonstrate the direct involvement of these membrane transporters in a native biological environment rather than using a low-throughput in vitro assay employing reconstituted proteins in a membrane bilayer system. Based on this new whole-cell screening approach, we demonstrated the optimization of a weak hit compound (2) into a small molecule (3) with improved in vitro and whole-cell activities. This study opens the possibility to quickly identify novel inhibitors of ECF transporters and optimize them based on structure-activity relationships.


Assuntos
Bactérias , Proteínas de Bactérias , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares
11.
ChemMedChem ; 17(5): e202100679, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34918860

RESUMO

The enzymes of the 2-C-methylerythritol-d-erythritol 4-phosphate (MEP) pathway (MEP pathway or non-mevalonate pathway) are responsible for the synthesis of universal precursors of the large and structurally diverse family of isoprenoids. This pathway is absent in humans, but present in many pathogenic organisms and plants, making it an attractive source of drug targets. Here, we present a high-throughput screening approach that led to the discovery of a novel fragment hit active against the third enzyme of the MEP pathway, PfIspD. A systematic SAR investigation afforded a novel chemical structure with a balanced activity-stability profile (16). Using a homology model of PfIspD, we proposed a putative binding mode for our newly identified inhibitors that sets the stage for structure-guided optimization.


Assuntos
Eritritol , Fosfatos Açúcares , Eritritol/análogos & derivados , Eritritol/química , Eritritol/metabolismo , Eritritol/farmacologia , Humanos , Fosfatos Açúcares/química
12.
RSC Med Chem ; 12(4): 593-601, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-34046630

RESUMO

In the search for new antibacterial compounds, we repositioned an antimalarial compound class by derivatising it based on the so-called "eNTRy" rules for enhanced accumulation into Gram-negative bacteria. We designed, synthesised and evaluated a small library of amino acid modified compounds together with the respective Boc-protected analogues, leading to no substantial improvement in antibacterial activity against Escherichia coli wild-type K12, whereas more distinct activity differences were observed in E. coli mutant strains ΔtolC, D22, ΔacrB and BL21(DE3)omp8. A comparison of the activity results of the E. coli mutants with respect to the known rules related to enhanced activity against Gram-negative bacteria revealed that applicability of the rules is not always ensured. Out of the four amino acids used in this study, glycine derivatives showed highest antibacterial activity, although still suffering from efflux issues.

13.
ChemMedChem ; 16(13): 2089-2093, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33844432

RESUMO

Chemical decomposition of DMSO stock solutions is a common incident that can mislead biological screening campaigns. Here, we share our case study of 2-aminothiazole 1, originating from an antimalarial class that undergoes chemical decomposition in DMSO at room temperature. As previously measured biological activities observed against Plasmodium falciparum NF54 and for the target enzyme PfIspE were not reproducible for a fresh batch, we tackled the challenge to understand where the activity originated from. Solvent- and temperature-dependent studies using HRMS and NMR spectroscopy to monitor the decomposition led to the isolation and in vitro evaluation of several fractions against PfIspE. After four days of decomposition, we successfully isolated the oxygenated and dimerised compounds using SFC purification and correlated the observed activities to them. Due to the unstable nature of the two isolates, it is likely that they undergo further decomposition contributing to the overall instability of the compound.


Assuntos
Antimaláricos/farmacologia , Dimetil Sulfóxido/química , Plasmodium falciparum/efeitos dos fármacos , Tiazóis/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Soluções , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
14.
Pharmaceutics ; 14(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35056900

RESUMO

Liposomes have been studied for decades as nanoparticulate drug delivery systems for cytostatics, and more recently, for antibiotics. Such nanoantibiotics show improved antibacterial efficacy compared to the free drug and can be effective despite bacterial recalcitrance. In this work, we present a loading method of bacteriomimetic liposomes for a novel, hydrophobic compound (HIPS5031) inhibiting energy-coupling factor transporters (ECF transporters), an underexplored antimicrobial target. The liposomes were composed of DOPG (18:1 (Δ9-cis) phosphatidylglycerol) and CL (cardiolipin), resembling the cell membrane of Gram-positive Staphylococcus aureus and Streptococcus pneumoniae, and enriched with cholesterol (Chol). The size and polydispersity of the DOPG/CL/± Chol liposomes remained stable over 8 weeks when stored at 4 °C. Loading of the ECF transporter inhibitor was achieved by thin film hydration and led to a high encapsulation efficiency of 33.19% ± 9.5% into the DOPG/CL/Chol liposomes compared to the phosphatidylcholine liposomes (DMPC/DPPC). Bacterial growth inhibition assays on the model organism Bacillus subtilis revealed liposomal HIPS5031 as superior to the free drug, showing a 3.5-fold reduction in CFU/mL at a concentration of 9.64 µM. Liposomal HIPS5031 was also shown to reduce B. subtilis biofilm. Our findings present an explorative basis for bacteriomimetic liposomes as a strategy against drug-resistant pathogens by surpassing the drug-formulation barriers of innovative, yet unfavorably hydrophobic, antibiotics.

15.
Cell Chem Biol ; 25(4): 392-402.e14, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29398561

RESUMO

Mycobacterial cell wall lipids bind the conserved CD1 family of antigen-presenting molecules and activate T cells via their T cell receptors (TCRs). Sulfoglycolipids (SGLs) are uniquely synthesized by Mycobacterium tuberculosis, but tools to study SGL-specific T cells in humans are lacking. We designed a novel hybrid synthesis of a naturally occurring SGL, generated CD1b tetramers loaded with natural or synthetic SGL analogs, and studied the molecular requirements for TCR binding and T cell activation. Two T cell lines derived using natural SGLs are activated by synthetic analogs independently of lipid chain length and hydroxylation, but differentially by saturation status. By contrast, two T cell lines derived using an unsaturated SGL synthetic analog were not activated by the natural antigen. Our data provide a bioequivalence hierarchy of synthetic SGL analogs and SGL-loaded CD1b tetramers. These reagents can now be applied to large-scale translational studies investigating the diagnostic potential of SGL-specific T cell responses or SGL-based vaccines.


Assuntos
Antígenos de Bactérias/imunologia , Antígenos CD1/imunologia , Glicolipídeos/imunologia , Ativação Linfocitária , Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Tuberculose/imunologia , Acilação , Antígenos CD1/química , Linhagem Celular , Glicolipídeos/química , Humanos , Modelos Moleculares , Mycobacterium tuberculosis/química , Multimerização Proteica
17.
Future Med Chem ; 9(11): 1277-1294, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28636418

RESUMO

In this review, we analyze the enzyme DXS, the first and rate-limiting protein in the methylerythritol 4-phosphate pathway. This pathway was discovered in 1996 and is one of two known metabolic pathways for the biosynthesis of the universal building blocks for isoprenoids. It promises to offer new targets for the development of anti-infectives against the human pathogens, malaria or tuberculosis. We mapped the sequence conservation of 1-deoxy-xylulose-5-phosphate synthase on the protein structure and analyzed it in comparison with previously identified druggable pockets. We provide a recent overview of known inhibitors of the enzyme. Taken together, this sets the stage for future structure-based drug design.


Assuntos
Antibacterianos/química , Antiprotozoários/química , Transferases/antagonistas & inibidores , Antibacterianos/farmacologia , Antiprotozoários/farmacologia , Desenho de Fármacos , Resistência a Medicamentos , Herbicidas/química , Herbicidas/farmacologia , Humanos , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Conformação Proteica , Relação Estrutura-Atividade
18.
ChemMedChem ; 11(20): 2287-2298, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27690321

RESUMO

The involvement of the serotonin 5-HT1A receptor (5-HT1A -R) in the antidepressant effect of allyphenyline and its analogues indicates that ligands bearing the 2-substituted imidazoline nucleus as a structural motif interact with 5-HT1A -R. Therefore, we examined the 5-HT1A -R profile of several imidazoline molecules endowed with a common scaffold consisting of an aromatic moiety linked to the 2-position of an imidazoline nucleus by a biatomic bridge. Our aim was to discover other ligands targeting 5-HT1A -R and to identify the structural features favoring 5-HT1A -R interaction. Structure-activity relationships, supported by modeling studies, suggested that some structural cliché such as a polar function and a methyl group in the bridge, as well as proper steric hindrance in the aromatic area of the above scaffold, favored 5-HT1A -R recognition and activation. We also highlighted the potent antidepressant-like effect (mouse forced swimming test) of (S)-(+)-19 [(S)-(+)-naphtyline] at very low dose (0.01 mg kg-1 ). This effect was clearly mediated by 5-HT1A , as it was significantly reduced by pretreatment with the 5-HT1A antagonist WAY100635.


Assuntos
Imidazolinas/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Imidazolinas/síntese química , Imidazolinas/química , Ligantes , Estrutura Molecular , Antagonistas do Receptor 5-HT1 de Serotonina/síntese química , Antagonistas do Receptor 5-HT1 de Serotonina/química , Relação Estrutura-Atividade
19.
ACS Med Chem Lett ; 7(10): 956-961, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27774136

RESUMO

Tolerance and dependence associated with chronic opioid exposure result from molecular, cellular, and neural network adaptations. Such adaptations concern opioid and nonopioid systems, including α2-adrenoceptors (α2-ARs) and I1- and I2-imidazoline binding sites (IBS). Agmatine, one of the hypothesized endogenous ligands of IBS, targeting several systems including α2-ARs and IBS, proved to be able to regulate opioid-induced analgesia and to attenuate the development of tolerance and dependence. Interested in the complex pharmacological profile of agmatine and considering the nature of its targets, we evaluated two series of imidazolines, rationally designed to simultaneously interact with I1-/I2-IBS or I1-/I2-IBS/α2-ARs. The compounds showing the highest affinities for I1-/I2-IBS or I1-/I2-IBS/α2-ARs have been selected for their in vivo evaluation on opiate withdrawal syndrome. Interestingly, 9, displaying I1-/I2-IBS/α2-ARs interaction profile, appears more effective in reducing expression and acquisition of morphine dependence and, therefore, might be considered a promising tool in managing opioid addiction.

20.
ACS Med Chem Lett ; 6(5): 496-501, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-26005521

RESUMO

Pharmacological studies have suggested that I1-imidazoline receptors are involved in the regulation of cardiovascular function and that selective I1-agonists, devoid of the side effects associated with the common hypotensive α2-adrenoreceptor agonists, might be considered as a second generation of centrally acting antihypertensives. Therefore, in the present study, inspired by the antihypertensive behavior of our selective I1-agonist 4, we designed, prepared, and studied the novel analogues 5-9. A selective I1-profile, associated with significant hemodinamic effects, was displayed by 5, 8, and 9. Interestingly, the highest potency and longest lasting activity displayed by 8 (carbomethyline) suggested that van der Waals interactions, promoted by the ortho methyl decoration of its aromatic moiety, are particularly advantageous. In addition, in analogy to what was noted for (S)-(+)-4, the observation that only (S)-(+)-8 displayed significant hemodynamic effects unequivocally confirmed the stereospecific nature of the I1 proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA