Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 180(4): 717-728.e19, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32084341

RESUMO

Consumption of glucosinolates, pro-drug-like metabolites abundant in Brassica vegetables, has been associated with decreased risk of certain cancers. Gut microbiota have the ability to metabolize glucosinolates, generating chemopreventive isothiocyanates. Here, we identify a genetic and biochemical basis for activation of glucosinolates to isothiocyanates by Bacteroides thetaiotaomicron, a prominent gut commensal species. Using a genome-wide transposon insertion screen, we identified an operon required for glucosinolate metabolism in B. thetaiotaomicron. Expression of BT2159-BT2156 in a non-metabolizing relative, Bacteroides fragilis, resulted in gain of glucosinolate metabolism. We show that isothiocyanate formation requires the action of BT2158 and either BT2156 or BT2157 in vitro. Monocolonization of mice with mutant BtΔ2157 showed reduced isothiocyanate production in the gastrointestinal tract. These data provide insight into the mechanisms by which a common gut bacterium processes an important dietary nutrient.


Assuntos
Bacteroides thetaiotaomicron/metabolismo , Carboidratos da Dieta/metabolismo , Glucosinolatos/metabolismo , Intestinos/microbiologia , Animais , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/patogenicidade , Regulação Bacteriana da Expressão Gênica , Humanos , Masculino , Camundongos , Óperon , Simbiose
2.
Metab Eng ; 52: 168-177, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30529131

RESUMO

Overcoming carbon catabolite repression presents a significant challenge, largely due to the complex regulatory networks governing substrate catabolism, even in microbial cells. In this work, we have engineered an E. coli strain, which we have named X2G, that not only exhibits a reversed substrate preference for xylose over glucose, but also demonstrates an unusual ability to produce significant amounts of glucose. We obtained this non-intuitive phenotype by deleting four genes in upper central metabolism: ptsI, glk, pfkA, and zwf, which respectively encode Enzyme I of the phosphotransferase system, glucokinase, the dominant isozyme of phosphofructokinase, and glucose-6-phosphate dehydrogenase. The deletion of ptsI and glk blocks glucose uptake in E. coli, while the deletion of pfkA and zwf prevents the reassimilation of carbons through glycolysis and the oxidative pentose phosphate pathway, respectively. Our strain X2G is capable of converting 34% of the carbon it takes up as xylose into exported glucose. This corresponds to a glucose production rate of 1.4 ±â€¯0.3 mmol/gDW/h at a specific growth rate of 0.25 ±â€¯0.03 h-1, or about 1.8 ±â€¯0.1 mM of glucose accumulated for every unit increase in OD600. Despite a 22% decrease in xylose uptake rate, a 33% decrease in biomass yield, and a 52% decrease in acetate production rate relative to the wild-type, the intracellular flux profile and cofactor allocation of X2G remain largely unperturbed, as elucidated through 13C-metabolic flux analysis. Further quantification of the pool sizes of key intracellular metabolites revealed that glucose secretion by X2G is likely driven by the substantial accumulation of intracellular glucose 6-phosphate, fructose 6-phosphate, glucose and fructose at levels greater than 20x of that in wild-type E. coli. Combined, our results shed light on the flexibility of central metabolism, and the opportunities this affords for producing value-added pentose- and hexose-derived products from lignocellulosic feedstocks.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Deleção de Genes , Glucose/metabolismo , Xilose/metabolismo , Biomassa , Repressão Catabólica , Fermentação , Frutose/biossíntese , Glucoquinase/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Glicólise , Engenharia Metabólica , Análise do Fluxo Metabólico , Via de Pentose Fosfato/genética , Fosfofrutoquinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA