Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
mBio ; : e0227223, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966230

RESUMO

IMPORTANCE: Protein filaments play important roles in many biological processes. We discovered an actin homolog in halophilic archaea, which we call Salactin. Just like the filaments that segregate DNA in eukaryotes, Salactin grows out of the cell poles towards the middle, and then quickly depolymerizes, a behavior known as dynamic instability. Furthermore, we see that Salactin affects the distribution of DNA in daughter cells when cells are grown in low-phosphate media, suggesting Salactin filaments might be involved in segregating DNA when the cell has only a few copies of the chromosome.

2.
Virol J ; 20(1): 100, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231481

RESUMO

Dengue has become one of the vector-borne diseases that affect humans worldwide. In Latin American countries, Colombia is historically one of the most affected by epidemics of this flavivirus. The underreporting of signs and symptoms of probable cases of dengue, the lack of characterization of the serotypes of the infection, and the few detailed studies of postmortem necropsies of patients are among other conditions that have delayed progress in the knowledge of the pathogenesis of the disease. This study presents the results of fragment sequencing assays on paraffin-embedded tissue samples from fatal DENV cases during the 2010 epidemic in Colombia. We found that the predominant serotype was DENV-2, with the Asian/American genotype of lineages 1 and 2. This work is one of the few reports of the circulating genotypes of dengue during the 2010 epidemic in Colombia, one of the most lethal dates in the country's history.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Dengue/epidemiologia , Parafina , Genótipo , Filogenia , Sorogrupo
3.
Vaccines (Basel) ; 10(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36560554

RESUMO

Several SARS-CoV-2 variants of concern (VOC) and interest (VOI) co-circulate in Colombia, and determining the neutralizing antibody (nAb) responses is useful to improve the efficacy of COVID-19 vaccination programs. Thus, nAb responses against SARS-CoV-2 isolates from the lineages B.1.111, P.1 (Gamma), B.1.621 (Mu), AY.25.1 (Delta), and BA.1 (Omicron), were evaluated in serum samples from immunologically naïve individuals between 9 and 13 weeks after receiving complete regimens of CoronaVac, BNT162b2, ChAdOx1, or Ad26.COV2.S, using microneutralization assays. An overall reduction of the nAb responses against Mu, Delta, and Omicron, relative to B.1.111 and Gamma was observed in sera from vaccinated individuals with BNT162b2, ChAdOx1, and Ad26.COV2.S. The seropositivity rate elicited by all the vaccines against B.1.111 and Gamma was 100%, while for Mu, Delta, and Omicron ranged between 32 to 87%, 65 to 96%, and 41 to 96%, respectively, depending on the vaccine tested. The significant reductions in the nAb responses against the last three dominant SARS-CoV-2 lineages in Colombia indicate that booster doses should be administered following complete vaccination schemes to increase the nAb titers against emerging SARS-CoV-2 lineages.

4.
Int J Infect Dis ; 125: 149-152, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36332905

RESUMO

BACKGROUND: The higher number of cases and deaths caused by COVID-19 in Colombia occurred during the third epidemic peak, where the Mu variant was associated with 50% of the cases. OBJECTIVE: To evaluate the association between the clinical outcome of COVID-19 with health conditions and SARS-CoV-2 lineages. METHODS: In this study, clinical metadata and SARS-CoV-2 lineages from 535 patients with different degrees of COVID-19 severity were obtained after the SARS-CoV-2 genomic surveillance in Colombia. Then, the associations between these variables were determined using a multidimensional unfolding analysis. RESULTS: Asymptomatic, symptomatic, severe, and deceased outcomes represented 15.2%, 29.7%, 7.3%, and 47.8% of the cases, respectively. Males tend to develop more serious COVID-19, and severe or fatal outcomes were typically observed in patients aged >60 years with comorbidities, including chronic obstructive pulmonary disease, heart disease, kidney disease, obesity, asthma, and smoking history. The SARS-CoV-2 Mu and Gamma variants dominated the third epidemic peak and accounted for most fatal cases with odd ratio values of 128.2 (CI 53.0-310.1) and 18.6 (CI 8.294-41.917). CONCLUSION: This study shows the high impact of SARS-CoV-2 lineages with higher prevalence on public health and the importance of monitoring COVID-19 risk factors to control the associated mortality.


Assuntos
COVID-19 , Epidemias , Masculino , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Colômbia/epidemiologia
5.
Biomedica ; 42(3): 541-545, 2022 09 02.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-36122293

RESUMO

INTRODUCTION: Monkeypox virus (MPXV) is an enveloped double-stranded DNA virus with a genome of approximately 197.209 bp. The current classification divides MPXV into three clades: Clade I (Central African or Congo Basin clade) and clades IIa and IIb (West African clades). OBJECTIVE: To report the complete genome and phylogenetic analysis of a human monkeypox case detected in Colombia. MATERIALS AND METHODS: Exudate from vesicular lesions was obtained from a male patient with recent travel history to Spain. A direct genomic approach was implemented in which total DNA from the sample was purified through a column-based method, followed by sequencing on the Nanopore GridION. Reads were aligned against the MPXV reference genome using minimap2 v.2.24 and phylogenetic inference was performed using maximum likelihood estimation. RESULTS: A total of 11.951 reads mapped directly to a reference genome with 96.8% of coverage (190.898 bp). CONCLUSION: Phylogenetic analysis of the MPXV circulating in Colombia demonstrated its close relationship to clade IIb responsible for the multi-country outbreak in 2022.


Introducción. El virus de la viruela del mono (MPXV) está compuesto por un genoma de ADN bicatenario, aproximadamente, de 197.209 pb. La clasificación actual agrupa el MPXV en tres clados: clado I (de la cuenca del Congo en África central), y clados IIa y IIb (de África occidental). Objetivo. Reportar el genoma completo y el análisis filogenético de un caso humano de viruela símica detectado en Colombia. Materiales y métodos. Se obtuvo exudado de lesiones vesiculares de un paciente varón con el antecedente de un viaje reciente a España. Se implementó un enfoque directo, en el cual se purificó el ADN total de la muestra mediante un método basado en columnas, seguido de la secuenciación directa en la plataforma Nanopore GridION. Las lecturas se alinearon con el genoma de referencia del MPXV, utilizando minimap2, v.2.24, y la inferencia filogenética fue realizada mediante la estimación por máxima verosimilitud. Resultados. Un total de 11.951 lecturas se alinearon directamente con el genoma de referencia con una cobertura del 96,8 % (190.898 pb). Conclusión. El análisis filogenético del MPXV circulante en Colombia demostró su estrecha relación con el clado de África occidental (clado IIb) responsable del brote en múltiples países en el 2022.


Assuntos
Monkeypox virus , Mpox , Colômbia , Humanos , Masculino , Mpox/diagnóstico , Mpox/epidemiologia , Mpox/patologia , Monkeypox virus/genética , Filogenia , Análise de Sequência de DNA
6.
Vaccines (Basel) ; 10(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35214639

RESUMO

Global surveillance programs for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are showing the emergence of variants with mutations in the spike protein. Genomic and laboratory surveillance are important to determine if these variants may be more infectious or less susceptible to antiviral treatments and vaccine-induced antibodies. Three of the most predominant SARS-CoV-2 variants in Colombia during the epidemiological peaks of 2021 were isolated: Mu, a variant of interest; Gamma, a variant of concern; B.1.111, which lacks genetic markers associated with greater virulence. Microneutralization assays were performed by incubating 120 mean tissue culture infectious doses (TCID50) of each SARS-CoV-2 isolate with five two-fold serial dilutions of sera from 31 BNT162b2-vaccinated volunteers. The mean neutralization titer (MN50) was calculated by the Reed-Muench method. At the end of August, Mu represented 49% of coronavirus disease 2019 (COVID-19) cases in Colombia, followed by 25% of Gamma. In contrast, B.1.111 became almost undetectable. The evaluation of neutralizing antibodies suggests that patients vaccinated with BNT162b2 generate neutralizing antibody titers against the Mu variant at significantly lower concentrations relative to B.1.111 and Gamma. This study shows the importance of continuing surveillance programs of emerging variants, as well as the need to evaluate the neutralizing antibody response induced by other vaccines.

7.
J Med Microbiol ; 71(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35099368

RESUMO

Coronavirus disease 2019 (COVID-19) is transmitted person-to-person mainly by close contact or droplets from respiratory tract. However, the actual time of viral shedding is still uncertain as well as the different routes of transmission. We aimed to characterize RNA shedding from nasopharyngeal and rectal samples in prolonged cases of mild COVID-19 in young male soldiers. Seventy patients from three different military locations were monitored after recommending to follow more strict isolation measures to prevent the spread of the virus. Then, nasopharyngeal, rectal, and blood samples were taken. SARS-CoV-2 RNA was detected by RT-PCR and specific antibodies by chemiluminescent immunoassays. The median nucleic acid conversion time (NACT) was 60 days (IQR: 7-85 days). Rectal swabs were taken in 60 % of patients. Seven patients (10 %) were positive in nasopharyngeal and rectal swabs, and five (7.14 %) remained positive in rectal swabs, but negative in nasopharyngeal samples. Four patients (5.71 %) that had been discharged, were positive again after 15 days. No significant difference was found in nucleic acid conversion time between age groups nor clinical classification. Maintaining distancing among different positive patients is essential as a possible re-exposure to the virus could cause a longer nucleic acid conversion time in SARS-COV-2 infections.


Assuntos
Anticorpos Antivirais/sangue , COVID-19 , Imunoglobulina G/sangue , RNA Viral/análise , COVID-19/diagnóstico , COVID-19/prevenção & controle , Surtos de Doenças , Humanos , Masculino , Militares , SARS-CoV-2 , Eliminação de Partículas Virais
8.
Virus Res ; 308: 198629, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780883

RESUMO

The E484K mutation at the SARS-CoV-2 Spike protein emerged independently in different variants around the world and has been widely associated with immune escape from neutralizing antibodies generated during previous infection or vaccination. In this work, the B.1 + L249S+E484K lineage was isolated along with A.1, B.1.420, and B.1.111 SARS-CoV-2 lineages without the E484K mutation and the neutralizing titer of convalescent sera was compared using microneutralization assays. While no significant differences in the neutralizing antibody titers were found between A.1 and B.lineages without the E484K mutation, the neutralizing titers against B.1 + L249S+E484K were 1.5, 1.9, 2.1, and 1.3-fold lower than against A.1, B.1.420, B.1.111-I, and B.1.111-II, respectively. However, molecular epidemiological data indicate that there is no increase in the transmissibility rate associated with this new lineage. This study supports the capability of new variants with the E484K mutation to be resistant to neutralization by humoral immunity, and therefore the need to intensify surveillance programs to determine if these lineages represent a risk for public health.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/imunologia , Humanos , Imunidade Humoral , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
9.
Infect Genet Evol ; 95: 105038, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403832

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic diversity has the potential to impact the virus transmissibility and the escape from natural infection- or vaccine-elicited neutralizing antibodies. Here, representative samples from circulating SARS-CoV-2 in Colombia between January and April 2021, were processed for genome sequencing and lineage determination following the nanopore amplicon ARTIC network protocol and PANGOLIN pipeline. This strategy allowed us to identify the emergence of the B.1.621 lineage, considered a variant of interest (VOI) with the accumulation of several substitutions affecting the Spike protein, including the amino acid changes I95I, Y144T, Y145S and the insertion 146 N in the N-terminal domain, R346K, E484K and N501Y in the Receptor binding Domain (RBD) and P681H in the S1/S2 cleavage site of the Spike protein. The rapid increase in frequency and fixation in a relatively short time in Magdalena, Atlantico, Bolivar, Bogotá D.C, and Santander that were near the theoretical herd immunity suggests an epidemiologic impact. Further studies will be required to assess the biological and epidemiologic roles of the substitution pattern found in the B.1.621 lineage.


Assuntos
Substituição de Aminoácidos , COVID-19/epidemiologia , Genoma Viral , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/transmissão , COVID-19/virologia , Colômbia/epidemiologia , Monitoramento Epidemiológico , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Filogeografia , Domínios Proteicos , SARS-CoV-2/classificação , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença
10.
Front Med (Lausanne) ; 8: 697605, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262921

RESUMO

COVID-19 pandemics has led to genetic diversification of SARS-CoV-2 and the appearance of variants with potential impact in transmissibility and viral escape from acquired immunity. We report a new and highly divergent lineage containing 21 distinctive mutations (10 non-synonymous, eight synonymous, and three substitutions in non-coding regions). The amino acid changes L249S and E484K located at the CTD and RBD of the Spike protein could be of special interest due to their potential biological role in the virus-host relationship. Further studies are required for monitoring the epidemiologic impact of this new lineage.

11.
Nat Commun ; 12(1): 3310, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083531

RESUMO

FtsZ is a key component in bacterial cell division, being the primary protein of the presumably contractile Z ring. In vivo and in vitro, it shows two distinctive features that could so far, however, not be mechanistically linked: self-organization into directionally treadmilling vortices on solid supported membranes, and shape deformation of flexible liposomes. In cells, circumferential treadmilling of FtsZ was shown to recruit septum-building enzymes, but an active force production remains elusive. To gain mechanistic understanding of FtsZ dependent membrane deformations and constriction, we design an in vitro assay based on soft lipid tubes pulled from FtsZ decorated giant lipid vesicles (GUVs) by optical tweezers. FtsZ filaments actively transform these tubes into spring-like structures, where GTPase activity promotes spring compression. Operating the optical tweezers in lateral vibration mode and assigning spring constants to FtsZ coated tubes, the directional forces that FtsZ-YFP-mts rings exert upon GTP hydrolysis can be estimated to be in the pN range. They are sufficient to induce membrane budding with constricting necks on both, giant vesicles and E.coli cells devoid of their cell walls. We hypothesize that these forces result from torsional stress in a GTPase activity dependent manner.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Guanosina Trifosfato/metabolismo , Fenômenos Biomecânicos , Divisão Celular/fisiologia , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Hidrólise , Lipossomos/metabolismo , Proteínas Luminescentes/metabolismo , Membranas/metabolismo , Modelos Biológicos , Pinças Ópticas , Proteínas Recombinantes de Fusão/metabolismo , Torção Mecânica
12.
Angew Chem Int Ed Engl ; 60(9): 4501-4506, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33155720

RESUMO

A universal gain-of-function approach for the spatiotemporal control of protein activity is highly desirable when reconstituting biological modules in vitro. Here we used orthogonal translation with a photocaged amino acid to map and elucidate molecular mechanisms in the self-organization of the prokaryotic filamentous cell-division protein (FtsZ) that is highly relevant for the assembly of the division ring in bacteria. We masked a tyrosine residue of FtsZ by site-specific incorporation of a photocaged tyrosine analogue. While the mutant still shows self-assembly into filaments, dynamic self-organization into ring patterns can no longer be observed. UV-mediated uncaging revealed that tyrosine 222 is essential for the regulation of the protein's GTPase activity, self-organization, and treadmilling dynamics. Thus, the light-mediated assembly of functional protein modules appears to be a promising minimal-regulation strategy for building up molecular complexity towards a minimal cell.


Assuntos
Proteínas de Bactérias/química , Proteínas do Citoesqueleto/química , Optogenética/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Mathanococcus/metabolismo , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Nitrobenzenos/química , Tirosina/química , Raios Ultravioleta
13.
Trop Med Infect Dis ; 5(4)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352748

RESUMO

Prenatal exposure to Zika virus (ZIKV) is associated with congenital anomalies of the brain and the eye and neurodevelopmental sequelae. The spectrum of disease outcomes may relate to timing of infection as well as genetic and environmental factors. Congenital infections occurring in twin pregnancies can inform the clinical spectrum of these conditions and provide unique information regarding timing of infection and in utero environment with disease pathophysiology. Herein, we report a monozygotic dichorionic-diamniotic twin pregnancy with probable prenatal ZIKV exposure identified through the Colombian ZIKV disease surveillance system. Multidisciplinary clinical evaluations were provided to the twins during their first three years of life through a national program for children with in utero ZIKV exposure. Laboratory evidence of congenital infection as well as microcephaly, brain, eye, and neurodevelopmental compromise related to prenatal ZIKV infection were identified in only one infant of the twin pregnancy. This is the first report of monozygotic twins discordant for Zika-associated birth defects. The evaluation of the pathophysiology of discordance in disease outcome for congenital infections in twin pregnancies may lead to a better understanding of potential complex environmental and genetic interactions between the mother, her offspring, and an infectious exposure.

14.
Biomedica ; 40(Supl. 2): 188-197, 2020 10 30.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-33152203

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 is a public health problem on a scale unprecedented in the last 100 years, as has been the response focused on the rapid genomic characterization of SARS-CoV-2 in virtually all regions of the planet. This pandemic emerged during the era of genomic epidemiology, a science fueled by continued advances in next-generation sequencing. Since its recent appearance, genomic epidemiology included the precise identification of new lineages or species of pathogens and the reconstruction of their genetic variability in real time, evidenced in past outbreaks of influenza H1N1, MERS, and SARS. However, the global and uncontrolled scale of this pandemic created a scenario where genomic epidemiology was put into practice en masse, from the rapid identification of SARS-CoV-2 to the registration of new lineages and their active surveillance throughout the world. Prior to the COVID-19 pandemic, the availability of genomic data on circulating pathogens in several Latin America and the Caribbean countries was scarce or nil. With the arrival of SARS-CoV-2, this scenario changed significantly, although the amount of available information remains scarce and, in countries such as Colombia, Brazil, Argentina, and Chile, the genomic information of SARS-CoV-2 was obtained mainly by research groups in genomic epidemiology rather than the product of a public health surveillance policy or program. This indicates the need to establish public health policies aimed at implementing genomic epidemiology as a tool to strengthen surveillance and early warning systems against threats to public health in the region.


La pandemia de COVID-19 causada por el SARS-CoV-2 es un problema de salud pública sin precedentes en los últimos 100 años, así como la respuesta centrada en la caracterización genómica del SARS-CoV-2 prácticamente en todas las regiones del planeta. Esta pandemia surgió durante la era de la epidemiología genómica impulsada por los continuos avances en la secuenciación de próxima generación. Desde su reciente aparición, la epidemiología genómica permitió la identificación precisa de nuevos linajes o especies de agentes patógenos y la reconstrucción de su variabilidad genética en tiempo real, lo que se hizo evidente en los brotes de influenza H1N1, MERS y SARS. Sin embargo, la escala global y descontrolada de esta pandemia ha generado una situación que obligó a utilizar de forma masiva herramientas de la epidemiología genómica como la rápida identificación del SARS-CoV-2 y el registro de nuevos linajes y su vigilancia activa en todo el mundo. Antes de la pandemia de COVID-19 la disponibilidad e datos genómicos de agentes patógenos circulantes en varios países de Latinoamérica y el Caribe era escasa o nula. Con la llegada del SARS-CoV-2 dicha situación cambió significativamente, aunque la cantidad de información disponible sigue siendo escasa y, en países como Colombia, Brasil, Argentina y Chile, la información genómica del SARS-CoV-2 provino principalmente de grupos de investigación en epidemiología genómica más que como producto de una política o programa de vigilancia en salud pública.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Genoma Viral , Disseminação de Informação , Epidemiologia Molecular/tendências , Pandemias , Pneumonia Viral/epidemiologia , Vigilância da População , RNA Viral/genética , Análise de Sequência de RNA , Sequência de Bases , COVID-19 , Região do Caribe , Doenças Transmissíveis Emergentes , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Planejamento em Desastres , Surtos de Doenças , Humanos , América Latina/epidemiologia , Epidemiologia Molecular/métodos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/virologia , Utilização de Procedimentos e Técnicas , Saúde Pública , RNA-Seq , SARS-CoV-2 , Desenvolvimento Sustentável , Viroses/epidemiologia
15.
Emerg Infect Dis ; 26(12): 2854-2862, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33219646

RESUMO

Coronavirus disease (COVID-19) in Colombia was first diagnosed in a traveler arriving from Italy on February 26, 2020. However, limited data are available on the origins and number of introductions of COVID-19 into the country. We sequenced the causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), from 43 clinical samples we collected, along with another 79 genome sequences available from Colombia. We investigated the emergence and importation routes for SARS-CoV-2 into Colombia by using epidemiologic, historical air travel, and phylogenetic observations. Our study provides evidence of multiple introductions, mostly from Europe, and documents >12 lineages. Phylogenetic findings validate the lineage diversity, support multiple importation events, and demonstrate the evolutionary relationship of epidemiologically linked transmission chains. Our results reconstruct the early evolutionary history of SARS-CoV-2 in Colombia and highlight the advantages of genome sequencing to complement COVID-19 outbreak investigations.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Genoma Viral , Genômica/métodos , Filogenia , SARS-CoV-2/genética , Colômbia/epidemiologia , Humanos , Reprodutibilidade dos Testes
16.
Biomédica (Bogotá) ; 40(supl.2): 188-197, oct. 2020. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-1142463

RESUMO

La pandemia de COVID-19 causada por el SARS-CoV-2 es un problema de salud pública sin precedentes en los últimos 100 años, así como la respuesta centrada en la caracterización genómica del SARS-CoV-2 prácticamente en todas las regiones del planeta. Esta pandemia surgió durante la era de la epidemiología genómica impulsada por los continuos avances en la secuenciación de próxima generación. Desde su reciente aparición, la epidemiología genómica permitió la identificación precisa de nuevos linajes o especies de agentes patógenos y la reconstrucción de su variabilidad genética en tiempo real, lo que se hizo evidente en los brotes de influenza H1N1, MERS y SARS. Sin embargo, la escala global y descontrolada de esta pandemia ha generado una situación que obligó a utilizar de forma masiva herramientas de la epidemiología genómica como la rápida identificación del SARS-CoV-2 y el registro de nuevos linajes y su vigilancia activa en todo el mundo. Antes de la pandemia de COVID-19 la disponibilidad de datos genómicos de agentes patógenos circulantes en varios países de Latinoamérica y el Caribe era escasa o nula. Con la llegada del SARS-CoV-2 dicha situación cambió significativamente, aunque la cantidad de información disponible sigue siendo escasa y, en países como Colombia, Brasil, Argentina y Chile, la información genómica del SARS-CoV-2 provino principalmente de grupos de investigación en epidemiología genómica más que como producto de una política o programa de vigilancia en salud pública. Ello evidencia la necesidad de establecer políticas de salud pública orientadas a la implementación de la epidemiología genómica como herramienta para fortalecer los sistemas de vigilancia y alerta temprana frente a amenazas para la salud pública en la región.


The COVID-19 pandemic caused by SARS-CoV-2 is a public health problem on a scale unprecedented in the last 100 years, as has been the response focused on the rapid genomic characterization of SARS-CoV-2 in virtually all regions of the planet. This pandemic emerged during the era of genomic epidemiology, a science fueled by continued advances in next-generation sequencing. Since its recent appearance, genomic epidemiology included the precise identification of new lineages or species of pathogens and the reconstruction of their genetic variability in real time, evidenced in past outbreaks of influenza H1N1, MERS, and SARS. However, the global and uncontrolled scale of this pandemic created a scenario where genomic epidemiology was put into practice en masse, from the rapid identification of SARS-CoV-2 to the registration of new lineages and their active surveillance throughout the world. Prior to the COVID-19 pandemic, the availability of genomic data on circulating pathogens in several Latin America and the Caribbean countries was scarce or nil. With the arrival of SARS-CoV-2, this scenario changed significantly, although the amount of available information remains scarce and, in countries such as Colombia, Brazil, Argentina, and Chile, the genomic information of SARS-CoV-2 was obtained mainly by research groups in genomic epidemiology rather than the product of a public health surveillance policy or program. This indicates the need to establish public health policies aimed at implementing genomic epidemiology as a tool to strengthen surveillance and early warning systems against threats to public health in the region.


Assuntos
Infecções por Coronavirus , Sequenciamento de Nucleotídeos em Larga Escala , Síndrome Respiratória Aguda Grave , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Monitoramento Epidemiológico , Política de Saúde
17.
Infect Genet Evol ; 85: 104557, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32950697

RESUMO

SARS-CoV-2 is a new member of the genus Betacoronavirus, responsible for the COVID-19 pandemic. The virus crossed the species barrier and established in the human population taking advantage of the spike protein high affinity for the ACE receptor to infect the lower respiratory tract. The Nucleocapsid (N) and Spike (S) are highly immunogenic structural proteins and most commercial COVID-19 diagnostic assays target these proteins. In an unpredictable epidemic, it is essential to know about their genetic variability. The objective of this study was to describe the substitution frequency of the S and N proteins of SARS-CoV-2 in South America. A total of 504 amino acid and nucleotide sequences of the S and N proteins of SARS-CoV-2 from seven South American countries (Argentina, Brazil, Chile, Ecuador, Peru, Uruguay, and Colombia), reported as of June 3, and corresponding to samples collected between March and April 2020, were compared through substitution matrices using the Muscle algorithm. Forty-three sequences from 13 Colombian departments were obtained in this study using the Oxford Nanopore and Illumina MiSeq technologies, following the amplicon-based ARTIC network protocol. The substitutions D614G in S and R203K/G204R in N were the most frequent in South America, observed in 83% and 34% of the sequences respectively. Strikingly, genomes with the conserved position D614 were almost completely replaced by genomes with the G614 substitution between March to April 2020. A similar replacement pattern was observed with R203K/G204R although more marked in Chile, Argentina and Brazil, suggesting similar introduction history and/or control strategies of SARS-CoV-2 in these countries. It is necessary to continue with the genomic surveillance of S and N proteins during the SARS-CoV-2 pandemic as this information can be useful for developing vaccines, therapeutics and diagnostic tests.


Assuntos
Substituição de Aminoácidos , COVID-19/diagnóstico , SARS-CoV-2/classificação , Proteínas Virais/genética , Proteínas do Nucleocapsídeo de Coronavírus/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , SARS-CoV-2/genética , Análise de Sequência de RNA , América do Sul , Glicoproteína da Espícula de Coronavírus/genética
18.
Cancer Res ; 80(17): 3606-3619, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32641409

RESUMO

Cellular senescence entails an irreversible growth arrest that evolved in part to prevent cancer. Paradoxically, senescent cells secrete proinflammatory and growth-stimulatory molecules, termed the senescence-associated secretory phenotype (SASP), which is correlated with cancer cell proliferation in culture and xenograft models. However, at what tumor stage and how senescence and the SASP act on endogenous tumor growth in vivo is unknown. To understand the role of senescence in cancer etiology, we subjected p16-3MR transgenic mice, which permit the identification and selective elimination of senescent cells in vivo, to the well-established two-step protocol of squamous cell skin carcinoma, in which tumorigenesis is initiated by a carcinogen 7,12-dimethylbenz[α]anthracene, and then promoted by 12-O-tetradecanoyl-phorbol-13-acetate (TPA). We show that TPA promotes skin carcinogenesis by inducing senescence and a SASP. Systemic induction of senescence in nontumor-bearing p16-3MR mice using a chemotherapy followed by the two-step carcinogenesis protocol potentiated the conversion of benign papillomas to carcinomas by elevating p38MAPK and MAPK/ERK signaling. Ablation of senescent cells reduced p38MAPK and MAPK/ERK signaling, thereby preventing the progression of benign papillomas to carcinomas. Thus, we show for the first time that senescent cells are tumor promoters, not tumor initiators, and that they stimulate skin carcinogenesis by elevating p38MAPK and MAPK/ERK signaling. These findings pave the way for developing novel therapeutics against senescence-fueled cancers. SIGNIFICANCE: These findings identify chemotherapy-induced senescence as a culprit behind tumor promotion, suggesting that elimination of senescent cells after chemotherapy may reduce occurrence of second cancers decades later. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/17/3606/F1.large.jpg.


Assuntos
Carcinogênese/metabolismo , Carcinoma de Células Escamosas/patologia , Senescência Celular/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neoplasias Cutâneas/patologia , Animais , Carcinogênese/patologia , Carcinoma de Células Escamosas/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Cutâneas/metabolismo
19.
Cells ; 9(6)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527013

RESUMO

Cortical actomyosin flows, among other mechanisms, scale up spontaneous symmetry breaking and thus play pivotal roles in cell differentiation, division, and motility. According to many model systems, myosin motor-induced local contractions of initially isotropic actomyosin cortices are nucleation points for generating cortical flows. However, the positive feedback mechanisms by which spontaneous contractions can be amplified towards large-scale directed flows remain mostly speculative. To investigate such a process on spherical surfaces, we reconstituted and confined initially isotropic minimal actomyosin cortices to the interfaces of emulsion droplets. The presence of ATP leads to myosin-induced local contractions that self-organize and amplify into directed large-scale actomyosin flows. By combining our experiments with theory, we found that the feedback mechanism leading to a coordinated directional motion of actomyosin clusters can be described as asymmetric cluster vibrations, caused by intrinsic non-isotropic ATP consumption with spatial confinement. We identified fingerprints of vibrational states as the basis of directed motions by tracking individual actomyosin clusters. These vibrations may represent a generic key driver of directed actomyosin flows under spatial confinement in vitro and in living systems.


Assuntos
Actomiosina/metabolismo , Movimento Celular , Humanos
20.
Infect Genet Evol ; 84: 104390, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32505692

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 is a public health problem unprecedented in the recent history of humanity. Different in-house real-time RT-PCR (rRT-PCR) methods for SARS-CoV-2 diagnosis and the appearance of genomes with mutations in primer regions have been reported. Hence, whole-genome data from locally-circulating SARS-CoV-2 strains contribute to the knowledge of its global variability and the development and fine tuning of diagnostic protocols. To describe the genetic variability of Colombian SARS-CoV-2 genomes in hybridization regions of oligonucleotides of the main in-house methods for SARS-CoV-2 detection, RNA samples with confirmed SARS-CoV-2 molecular diagnosis were processed through next-generation sequencing. Primers/probes sequences from 13 target regions for SARS-CoV-2 detection suggested by 7 institutions and consolidated by WHO during the early stage of the pandemic were aligned with Muscle tool to assess the genetic variability potentially affecting their performance. Finally, the corresponding codon positions at the 3' end of each primer, the open reading frame inspection was identified for each gene/protein product. Complete SARS-CoV-2 genomes were obtained from 30 COVID-19 cases, representative of the current epidemiology in the country. Mismatches between at least one Colombian sequence and five oligonucleotides targeting the RdRP and N genes were observed. The 3' end of 4 primers aligned to the third codon position, showed high risk of nucleotide substitution and potential mismatches at this critical position. Genetic variability was detected in Colombian SARS-CoV-2 sequences in some of the primer/probe regions for in-house rRT-PCR diagnostic tests available at WHO COVID-19 technical guidelines; its impact on the performance and rates of false-negative results should be experimentally evaluated. The genomic surveillance of SARS-CoV-2 is highly recommended for the early identification of mutations in critical regions and to issue recommendations on specific diagnostic tests to ensure the coverage of locally-circulating genetic variants.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Genoma Viral , Pandemias , Pneumonia Viral/epidemiologia , RNA Viral/genética , Proteínas Virais/genética , Sequência de Bases , Betacoronavirus/patogenicidade , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Técnicas de Laboratório Clínico , Colômbia/epidemiologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Epidemiologia Molecular , Fases de Leitura Aberta , Pneumonia Viral/diagnóstico , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2 , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA