Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 10(1): 67, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851800

RESUMO

Lower body negative pressure (LBNP) has been proposed as a countermeasure to mitigate the cephalad fluid shift occurring during spaceflight, which may be associated with the development of Spaceflight Associated Neuro-ocular Syndrome (SANS). This study quantifies the effect of LBNP on intraocular pressure (IOP), mean arterial pressure at eye level (MAPeye), and ocular perfusion pressure (OPP). Twenty-four subjects (12 male, 12 female) were subjected to graded LBNP in 0° supine and 15° head-down tilt (HDT) postures from 0 mmHg to -50 mmHg in 10 mmHg increments. IOP decreased significantly with LBNP pressure in 0° supine (by 0.7 ± 0.09 mmHg per 10 mmHg LBNP pressure, p < 0.001) and in 15° HDT (by 1.0 ± 0.095 mmHg per 10 mmHg of LBNP pressure, p < 0.001). MAPeye significantly decreased by 0.9 ± 0.4 mmHg per 10 mmHg of LBNP pressure in 0° supine (p = 0.016) but did not significantly change with LBNP in 15° HDT (p = 0.895). OPP did not significantly change with LBNP in 0° supine (p = 0.539) but it significantly increased in 15° HDT at 1.0 ± 0.3 mmHg per 10 mmHg of LBNP pressure (p = 0.010). Sex did not have a significant effect on OPP, MAPeye, or IOP in any condition. In 15° HDT, the reduction in IOP during increasing negative pressure, combined with the relatively constant MAPeye, led to the increase in OPP. Furthermore, results suggest that LBNP, while effective in reducing IOP, is not effective in reducing OPP across all postures investigated.

2.
Hum Mov Sci ; 95: 103199, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518737

RESUMO

The ability to coordinate actions between the limbs is important for many operationally relevant tasks associated with space exploration. A future milestone in space exploration is sending humans to Mars. Therefore, an experiment was designed to examine the influence of inherent and incidental constraints on the stability characteristics associated with the bimanual control of force in simulated Martian gravity. A head-up tilt (HUT)/head-down tilt (HDT) paradigm was used to simulate gravity on Mars (22.3° HUT). Right limb dominant participants (N = 11) were required to rhythmically coordinate patterns of isometric forces in 1:1 in-phase and 1:2 multifrequency patterns by exerting force with their right and left limbs. Lissajous displays were provided to guide task performance. Participants performed 14 twenty-second practice trials at 90° HUT (Earth). Following a 30-min rest period, participants performed 2 test trials for each coordination pattern in both Earth and Mars conditions. Performance during the test trials were compared. Results indicated very effective temporal performance of the goal coordination tasks in both gravity conditions. However, results indicated differences associated with the production of force between Earth and Mars. In general, participants produced less force in simulated Martian gravity than in the Earth condition. In addition, force production was more harmonic in Martian gravity than Earth gravity for both limbs, indicating that less force distortions (adjustments, hesitations, and/or perturbations) occurred in the Mars condition than in the Earth condition. The force coherence analysis indicated significantly higher coherence in the 1:1 task than in the 1:2 task for all force frequency bands, with the highest level of coherence in the 1-4 Hz frequency band for both gravity conditions. High coherence in the 1-4 Hz frequency band is associated with a common neural drive that activates the two arms simultaneously and is consistent with the requirements of the two tasks. The results also support the notion that neural crosstalk stabilizes the performance of the 1:1 in-phase task. In addition, significantly higher coherence in the 8-12 Hz frequency bands were observed for the Earth condition than the Mars condition. Force coherence in the 8-12 Hz bands is associated with the processing of sensorimotor information, suggesting that participants were better at integrating visual, proprioceptive, and/or tactile feedback in Earth than for the Mars condition. Overall, the results indicate less neural interference in Martian gravity; however, participants appear to be more effective at using the Lissajous displays to guide performance under Earth's gravity.


Assuntos
Marte , Desempenho Psicomotor , Humanos , Masculino , Adulto , Desempenho Psicomotor/fisiologia , Adulto Jovem , Gravitação , Feminino , Voo Espacial , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Fenômenos Biomecânicos , Simulação de Ambiente Espacial , Artes Marciais/fisiologia
3.
NPJ Microgravity ; 10(1): 22, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413627

RESUMO

Head-down tilt (HDT) has been widely proposed as a terrestrial analog of microgravity and used also to investigate the occurrence of spaceflight-associated neuro-ocular syndrome (SANS), which is currently considered one of the major health risks for human spaceflight. We propose here an in vivo validated numerical framework to simulate the acute ocular-cerebrovascular response to 6° HDT, to explore the etiology and pathophysiology of SANS. The model links cerebral and ocular posture-induced hemodynamics, simulating the response of the main cerebrovascular mechanisms, as well as the relationship between intracranial and intraocular pressure to HDT. Our results from short-term (10 min) 6° HDT show increased hemodynamic pulsatility in the proximal-to-distal/capillary-venous cerebral direction, a marked decrease (-43%) in ocular translaminar pressure, and an increase (+31%) in ocular perfusion pressure, suggesting a plausible explanation of the underlying mechanisms at the onset of ocular globe deformation and edema formation over longer time scales.

4.
Aerosp Med Hum Perform ; 94(6): 457-465, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37194185

RESUMO

BACKGROUND: How to determine team composition is one of many key topics when developing humanity's next deep space exploration programs. Behavioral health and performance among spaceflight teams are key aspects impacted by team composition and cohesiveness.METHODS: This narrative review highlights areas of consideration for building cohesive teams in long duration spaceflight environments. The authors gathered information from a variety of team-behavior related studies that focused on team composition, cohesion, and dynamics, as well as others topics such as faultlines and subgroups, diversity, personality traits, personal values, and crew compatibility training.RESULTS: The literature suggests that team cohesion occurs more easily when individuals are similar to one another, and deep-level variables such as personality and personal values have a greater impact on crew compatibility than surface level variables such as age, nationality, or gender. Diversity can have both positive and negative impacts on team cohesiveness.CONCLUSION: Team composition, as well as pre-mission conflict resolution training can greatly impact group cohesion. This review aims to map areas of concern and assist with crew planning for long duration spaceflight missions.Gangeme A, Simpson B, De La Torre GG, Larose TL, Diaz-Artiles A. A comprehensive look behind team composition for long duration spaceflight. Aerosp Med Hum Perform. 2023; 94(6):457-465.


Assuntos
Voo Espacial , Humanos , Personalidade , Fatores de Tempo , Astronautas
5.
J Appl Physiol (1985) ; 134(2): 217-229, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36476158

RESUMO

Altered gravity affects hemodynamics and blood flow in the neck. At least one incidence of jugular venous thrombosis has been reported in an astronaut on the International Space Station. This investigation explores the impact of changes in the direction of the gravitational vector on the characteristics of the neck arteries and veins. Twelve subjects underwent graded tilt from 45° head-up to 45° head-down in 15° increments in both supine and prone positions. At each angle, the cross-sectional area of the left and right common carotid arteries (ACCA) and internal jugular veins (AIJV) were measured by ultrasound. Internal jugular venous pressure (IJVP) was also measured by compression sonography. Gravitational dose-response curves were generated from experimental data. ACCA did not show any gravitational dependence. Conversely, both AIJV and IJVP increased in a nonlinear fashion with head-down tilt. AIJV was significantly larger on the right side than the left side at all tilt angles. In addition, IJVP was significantly elevated in the prone position compared with the supine position, most likely because of raised intrathoracic pressure while prone. Dose-response curves were compared with existing experimental data from parabolic flight and spaceflight studies, showing good agreement on an acute timescale. The quantification of jugular hemodynamics as a function of changes in the gravitational vector presented here provides a terrestrial model to reference spaceflight-induced changes, contributes to the assessment of the pathogenesis of spaceflight venous thromboembolism events, and informs the development of countermeasures.NEW & NOTEWORTHY Flow stasis and thrombosis have been identified in the jugular vein during spaceflight. We measured the area and pressure of the internal jugular vein and the area of the common carotid artery in graded head-up and head-down tilt. Experimental data are used to generate gravitational dose-response curves for the measured variables, demonstrating that jugular vein area and pressure exhibit a nonlinear response to altered gravity. Gravitational dose-response curves show good agreement with spaceflight and parabolic flight studies.


Assuntos
Decúbito Inclinado com Rebaixamento da Cabeça , Voo Espacial , Humanos , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Hemodinâmica/fisiologia , Astronautas , Posicionamento do Paciente , Veias Jugulares/fisiologia
6.
Front Physiol ; 13: 932425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304582

RESUMO

Long duration spaceflight missions will require novel exercise systems to protect astronaut crew from the detrimental effects of microgravity exposure. The SPRINT protocol is a novel and promising exercise prescription that combines aerobic and resistive training using a flywheel device, and it was successfully employed in a 70-day bed-rest study as well as onboard the International Space Station. Our team created a VR simulation to further augment the SPRINT protocol when using a flywheel ergometer training device (the Multi-Mode Exercise Device or M-MED). The simulation aspired to maximal realism in a virtual river setting while providing real-time biometric feedback on heart rate performance to subjects. In this pilot study, five healthy, male, physically-active subjects aged 35 ± 9.0 years old underwent 2 weeks of SPRINT protocol, either with or without the VR simulation. After a 1-month washout period, subjects returned for a subsequent 2 weeks in the opposite VR condition. We measured physiological and cognitive variables of stress, performance, and well-being. While physiological effects did not suggest much difference with the VR condition over 2 weeks, metrics of motivation, affect, and mood restoration showed detectable differences, or trended toward more positive outcomes than exercise without VR. These results provide evidence that a well-designed VR "exergaming" simulation with biometric feedback could be a beneficial addition to exercise prescriptions, especially if users are exposed to isolation and confinement.

7.
Front Physiol ; 13: 943443, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082220

RESUMO

Extended missions in microgravity, such as those on the International Space Station (ISS) or future missions to Mars, can result in the physiological deconditioning of astronauts. Current mitigation strategies include a regimented diet in addition to resistance training paired with aerobic exercise. With the increased effort toward long duration space missions, there is room to optimize the cost, required time of use, and mass of exercise equipment. This research effort focuses on understanding the biomechanics of Heel Raise (HR) exercises while using the Hybrid Ultimate Lifting Kit (HULK) device, an exercise device designed to optimize volume and functionality. Using the biomechanics tool OpenSim, the effect of HR foot stance (15° inward, 15° outward, and straight) was assessed by analyzing kinematic and kinetic data. In particular, we analyzed peak joint angles, range of motion, joint moments, and angular impulses of a single subject. Preliminary results indicated no significant differences in terms of ankle/metatarsophalangeal/subtalar joint angles, range of motion, joint moments, and angular impulses between foot stances. In addition, loaded HR exercises were compared to body weight HR exercises without the HULK device. Finally, recommendations are made towards an optimal HR routine for long-duration space missions. The impact to health and rehabilitation on Earth is also discussed.

8.
J Am Heart Assoc ; 11(14): e024175, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35861832

RESUMO

Background The cardiovascular system is strongly dependent on the gravitational environment. Gravitational changes cause mechanical fluid shifts and, in turn, autonomic effectors influence systemic circulation and cardiac control. We implemented a tilt paradigm to (1) investigate the acute hemodynamic response across a range of directions of the gravitational vector, and (2) to generate specific dose-response relationships of this gravitational dependency. Methods and Results Twelve male subjects were tilted from 45° head-up tilt to 45° head-down tilt in 15° increments, in both supine and prone postures. We measured the steady-state hemodynamic response in a range of variables including heart rate, stroke volume, cardiac output, oxygen consumption, total peripheral resistance, blood pressure, and autonomic indices derived from heart rate variability analysis. There is a strong gravitational dependence in almost all variables considered, with the exception of oxygen consumption, whereas systolic blood pressure remained controlled to within ≈3% across the tilt range. Hemodynamic responses are primarily driven by differential loading on the baroreflex receptors, combined with differences in venous return to the heart. Thorax compression in the prone position leads to reduced venous return and increased sympathetic nervous activity, raising heart rate, and systemic vascular resistance while lowering cardiac output and stroke volume. Conclusions Gravitational dose-response curves generated from these data provide a comprehensive baseline from which to assess the efficacy of potential spaceflight countermeasures. Results also assist clinical management of terrestrial surgery in prone posture or head-down tilt positions.


Assuntos
Sistema Cardiovascular , Postura , Sistema Nervoso Autônomo/fisiologia , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Hemodinâmica/fisiologia , Humanos , Masculino , Postura/fisiologia
9.
J Appl Physiol (1985) ; 132(1): 24-35, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34762525

RESUMO

Changes in the gravitational vector by postural changes or weightlessness induce fluid shifts, impacting ocular hemodynamics and regional pressures. This investigation explores the impact of changes in the direction of the gravitational vector on intraocular pressure (IOP), mean arterial pressure at eye level (MAPeye), and ocular perfusion pressure (OPP), which is critical for ocular health. Thirteen subjects underwent 360° of tilt (including both prone and supine positions) at 15° increments. At each angle, steady-state IOP and MAPeye were measured, and OPP calculated as MAPeye - IOP. Experimental data were also compared to a six-compartment lumped-parameter model of the eye. Mean IOP, MAPeye, and OPP significantly increased from 0° supine to 90° head-down tilt (HDT) by 20.7 ± 1.7 mmHg (P < 0.001), 38.5 ± 4.1 mmHg (P < 0.001), and 17.4 ± 3.2 mmHg (P < 0.001), respectively. Head-up tilt (HUT) significantly decreased OPP by 16.5 ± 2.5 mmHg (P < 0.001). IOP was significantly higher in prone versus supine position for much of the tilt range. Our study indicates that OPP is highly gravitationally dependent. Specifically, data show that MAPeye is more gravitationally dependent than IOP, thus causing OPP to increase during HDT and to decrease during HUT. In addition, IOP was elevated in prone position compared with supine position due to the additional hydrostatic column between the base of the rostral globe to the mid-coronal plane, supporting the notion that hydrostatic forces play an important role in ocular hemodynamics. Changes in OPP as a function of changes in gravitational stress and/or weightlessness may play a role in the pathogenesis of spaceflight-associated neuro-ocular syndrome.NEW & NOTEWORTHY Maintaining appropriate ocular perfusion pressure (OPP) is critical for ocular health. We measured the relative changes in intraocular and mean arterial pressures during 360° tilt and calculated OPP, which was elevated during head-down tilt and decreased during head-up tilt. Experimental data are also explained by our computational model. We demonstrate that OPP is more gravitationally dependent than previously recognized and may be a factor in the overall patho-etiology behind the weightlessness-induced spaceflight-associated neuro-ocular syndrome.


Assuntos
Pressão Intraocular , Ausência de Peso , Pressão Sanguínea , Decúbito Inclinado com Rebaixamento da Cabeça , Humanos , Perfusão , Tonometria Ocular , Ausência de Peso/efeitos adversos
10.
J Clin Monit Comput ; 36(5): 1355-1366, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34677821

RESUMO

PURPOSE: Altered gravity environments introduce cardiovascular changes that may require continuous hemodynamic monitoring in both spaceflight and terrestrial analogs. Conditions in such environments are often prohibitive to direct/invasive methods and therefore, indirect measurement techniques must be used. This study compares two common cardiac measurement techniques used in the human spaceflight domain, pulse contour analysis (PCA-Nexfin) and inert gas rebreathing (IGR-Innocor), in subjects completing ergometer exercise under altered gravity conditions simulated using a tilt paradigm. METHODS: Seven subjects were tilted to three different angles representing Martian, Lunar, and microgravity conditions in the rostrocaudal direction. They completed a 36-min submaximal cardiovascular exercise protocol in each condition. Hemodynamics were continuously monitored using Nexfin and Innocor. RESULTS: Linear mixed-effects models revealed a significant bias of [Formula: see text] ml ([Formula: see text]) in stroke volume and [Formula: see text] l/min ([Formula: see text]) in cardiac output, with Nexfin measuring greater than Innocor in both variables. These values are in agreement with a Bland-Altman analysis. The correlation of stroke volume and cardiac output measurements between Nexfin and Innocor were [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]) respectively. CONCLUSION: There is a poor agreement in absolute stroke volume and cardiac output values between measurement via PCA (Nexfin) and IGR (Innocor) in subjects who are exercising in simulated altered gravity environments. These results suggest that the chosen measurement method and device greatly impacts absolute measurements of cardiac output. However, there is a good level of agreement between the two devices when measuring relative changes. Either of these devices seem adequate to capture cardiac changes, but should not be solely relied upon for accurate measurement of absolute cardiac output.


Assuntos
Meio Ambiente Extraterreno , Marte , Débito Cardíaco , Exercício Físico , Teste de Esforço/métodos , Humanos
11.
NPJ Microgravity ; 7(1): 46, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782645

RESUMO

Gas pressurized spacesuits are cumbersome, cause injuries, and are metabolically expensive. Decreasing the gas pressure of the spacesuit is an effective method for improving mobility, but reduction in the total spacesuit pressure also results in a higher risk for decompression sickness (DCS). The risk of DCS is currently mitigated by breathing pure oxygen before the extravehicular activity (EVA) for up to 4 h to remove inert gases from body tissues, but this has a negative operational impact due to the time needed to perform the prebreathe. In this paper, we review and quantify these important trade-offs between spacesuit pressure, mobility, prebreathe time (or risk of DCS), and space habitat/station atmospheric conditions in the context of future planetary EVAs. In addition, we explore these trade-offs in the context of the SmartSuit architecture, a hybrid spacesuit with a soft-robotic layer that, not only increases mobility with assistive actuators in the lower body, but it also applies some level of mechanical counterpressure (MCP). The additional MCP in hybrid spacesuits can be used to supplement the gas pressure (i.e., increasing the total spacesuit pressure), therefore reducing the risk of DCS (or reduce prebreathe time). Alternatively, the MCP can be used to reduce the gas pressure (i.e., maintaining the same total spacesuit pressure), therefore increasing mobility. Finally, we propose a variable pressure concept of operations for the SmartSuit spacesuit. Our framework quantifies critical spacesuit and habitat trade-offs for future planetary exploration and contributes to the assessment of human health and performance during future planetary EVAs.

12.
Aerosp Med Hum Perform ; 92(7): 570-578, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34503631

RESUMO

INTRODUCTION: Current spacesuits are cumbersome and metabolically expensive. The use of robotic actuators could improve extravehicular activity performance. We propose a novel method to quantify the benefit of robotic actuators during planetary ambulation.METHODS: Using the OpenSim framework, we completed a biomechanical analysis of three walking conditions: unsuited, suited with the extravehicular mobility unit (EMU) spacesuit (represented as external joint torques applied to human joints), and suited with the EMU and assisted by robotic actuators capable of producing up to 10 Nm of torque. For each scenario, we calculated the inverse kinematics and inverse dynamics of the lower body joints (hip, knee, and ankle). We also determined the activation of muscles and robotic actuators (when present). Finally, from inverse dynamics and muscle activation results, the metabolic cost of one gait cycle was calculated in all three conditions.RESULTS: The moments of lower body joints increased due to the increased resistance to movement from the spacesuit. The additional torque increased the overall metabolic cost by 85 compared to the unsuited condition. The assistive robotic actuators were able to reduce the metabolic cost induced by EMU resistance by 15.DISCUSSION: Our model indicates that the majority of metabolic cost reduction can be attributed to the actuators located at the hip. The robotic actuators reduced metabolic cost similar to that of modern-day actuators used to improve walking. During a Mars mission, the actuators could save one crewmember up to 100,000 kilocal on one 539-d planetary expedition.Kluis L, Keller N, Bai H, Iyengar N, Shepherd R, Diaz-Artiles A. Reducing metabolic cost during planetary ambulation using robotic actuation. Aerosp Med Hum Perform. 2021; 92(7):570578.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Fenômenos Biomecânicos , Marcha , Humanos , Caminhada
13.
Neuroscience ; 468: 282-320, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34087393

RESUMO

Precision and accuracy are two fundamental properties of any system, including the nervous system. Reduced precision (i.e., imprecision) results from the presence of neural noise at each level of sensory, motor, and perceptual processing. This review has three objectives: (1) to show the importance of studying vestibular precision, and specifically that studying accuracy without studying precision ignores fundamental aspects of the vestibular system; (2) to synthesize key hypotheses about precision in vestibular perception, the vestibulo-ocular reflex, posture, and neurons; and (3) to show that groups of studies that are thoughts to be distinct (e.g., perceptual thresholds, subjective visual vertical variability, neuronal variability) are actually "two sides of the same coin" - because the methods used allow results to be related to the standard deviation of a Gaussian distribution describing the underlying neural noise. Vestibular precision varies with age, stimulus amplitude, stimulus frequency, body orientation, motion direction, pathology, medication, and electrical/mechanical vestibular stimulation, but does not vary with sex. The brain optimizes precision during integration of vestibular cues with visual, auditory, and/or somatosensory cues. Since a common concern with precision metrics is time required for testing, we describe approaches to optimize data collection and provide evidence that fatigue and session effects are minimal. Finally, we summarize how precision is an individual trait that is correlated with clinical outcomes in patients as well as with performance in functional tasks like balance. These findings highlight the importance of studying vestibular precision and accuracy, and that knowledge gaps remain.


Assuntos
Percepção de Movimento , Vestíbulo do Labirinto , Movimentos Oculares , Humanos , Neurônios , Percepção , Postura , Reflexo Vestíbulo-Ocular
14.
NPJ Microgravity ; 7(1): 16, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980866

RESUMO

Extravehicular activity (EVA) is one of the most dangerous activities of human space exploration. To ensure astronaut safety and mission success, it is imperative to identify and mitigate the inherent risks and challenges associated with EVAs. As we continue to explore beyond low earth orbit and embark on missions back to the Moon and onward to Mars, it becomes critical to reassess EVA risks in the context of a planetary surface, rather than in microgravity. This review addresses the primary risks associated with EVAs and identifies strategies that could be implemented to mitigate those risks during planetary surface exploration. Recent findings within the context of spacesuit design, Concept of Operations (CONOPS), and lessons learned from analog research sites are summarized, and how their application could pave the way for future long-duration space missions is discussed. In this context, we divided EVA risk mitigation strategies into two main categories: (1) spacesuit design and (2) CONOPS. Spacesuit design considerations include hypercapnia prevention, thermal regulation and humidity control, nutrition, hydration, waste management, health and fitness, decompression sickness, radiation shielding, and dust mitigation. Operational strategies discussed include astronaut fatigue and psychological stressors, communication delays, and the use of augmented reality/virtual reality technologies. Although there have been significant advances in EVA performance, further research and development are still warranted to enable safer and more efficient surface exploration activities in the upcoming future.

15.
J Appl Physiol (1985) ; 130(6): 1983-2001, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33914657

RESUMO

The human cardiovascular (CV) system elicits a physiological response to gravitational environments, with significant variation between different individuals. Computational modeling can predict CV response, however model complexity and variation of physiological parameters in a normal population makes it challenging to capture individual responses. We conducted a sensitivity analysis on an existing 21-compartment lumped-parameter hemodynamic model in a range of gravitational conditions to 1) investigate the influence of model parameters on a tilt test CV response and 2) to determine the subset of those parameters with the most influence on systemic physiological outcomes. A supine virtual subject was tilted to upright under the influence of a constant gravitational field ranging from 0 g to 1 g. The sensitivity analysis was conducted using a Latin hypercube sampling/partial rank correlation coefficient methodology with subsets of model parameters varied across a normal physiological range. Sensitivity was determined by variation in outcome measures including heart rate, stroke volume, central venous pressure, systemic blood pressures, and cardiac output. Results showed that model parameters related to the length, resistance, and compliance of the large veins and parameters related to right ventricular function have the most influence on model outcomes. For most outcome measures considered, parameters related to the heart are dominant. Results highlight which model parameters to accurately value in simulations of individual subjects' CV response to gravitational stress, improving the accuracy of predictions. Influential parameters remain largely similar across gravity levels, highlighting that accurate model fitting in 1 g can increase the accuracy of predictive responses in reduced gravity.NEW & NOTEWORTHY Computational modeling is used to predict cardiovascular responses to altered gravitational environments. However, considerable variation between subjects and model complexity makes accurate parameter assignment for individuals challenging. This computational effort studies sensitivity in cardiovascular model outcomes due to varying parameters across a normal physiological range. This allows determination of which parameters have the largest influence on outcomes, i.e., which parameters must be most carefully selected to give accurate predictions of individual responses.


Assuntos
Gravitação , Individualidade , Pressão Sanguínea , Frequência Cardíaca , Humanos , Modelos Cardiovasculares , Teste da Mesa Inclinada
16.
Front Physiol ; 12: 794705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069255

RESUMO

Many of the activities associated with spaceflight require individuals to coordinate actions between the limbs (e.g., controlling a rover, landing a spacecraft). However, research investigating the influence of gravity on bimanual coordination has been limited. The current experiment was designed to determine an individual's ability to adapt to altered-gravity when performing a complex bimanual force coordination task, and to identify constraints that influence coordination dynamics in altered-gravity. A tilt table was used to simulate gravity on Earth [90° head-up tilt (HUT)] and microgravity [6° head-down tilt (HDT)]. Right limb dominant participants (N = 12) were required to produce 1:1 in-phase and 1:2 multi-frequency force patterns. Lissajous information was provided to guide performance. Participants performed 14, 20 s trials at 90° HUT (Earth). Following a 30-min rest period, participants performed, for each coordination pattern, two retention trials (Earth) followed by two transfer trials in simulated microgravity (6° HDT). Results indicated that participants were able to transfer their training performance during the Earth condition to the microgravity condition with no additional training. No differences between gravity conditions for measures associated with timing (interpeak interval ratio, phase angle slope ratio) were observed. However, despite the effective timing of the force pulses, there were differences in measures associated with force production (peak force, STD of peak force mean force). The results of this study suggest that Lissajous displays may help counteract manual control decrements observed during microgravity. Future work should continue to explore constraints that can facilitate or interfere with bimanual control performance in altered-gravity environments.

17.
BMC Med ; 18(1): 271, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32883276

RESUMO

BACKGROUND: New York City was the first major urban center of the COVID-19 pandemic in the USA. Cases are clustered in the city, with certain neighborhoods experiencing more cases than others. We investigate whether potential socioeconomic factors can explain between-neighborhood variation in the COVID-19 test positivity rate. METHODS: Data were collected from 177 Zip Code Tabulation Areas (ZCTA) in New York City (99.9% of the population). We fit multiple Bayesian Besag-York-Mollié (BYM) mixed models using positive COVID-19 tests as the outcome, a set of 11 representative demographic, economic, and health-care associated ZCTA-level parameters as potential predictors, and the total number of COVID-19 tests as the exposure. The BYM model includes both spatial and nonspatial random effects to account for clustering and overdispersion. RESULTS: Multiple regression approaches indicated a consistent, statistically significant association between detected COVID-19 cases and dependent children (under 18 years old), population density, median household income, and race. In the final model, we found that an increase of only 5% in young population is associated with a 2.3% increase in COVID-19 positivity rate (95% confidence interval (CI) 0.4 to 4.2%, p=0.021). An increase of 10,000 people per km2 is associated with a 2.4% (95% CI 0.6 to 4.2%, p=0.011) increase in positivity rate. A decrease of $10,000 median household income is associated with a 1.6% (95% CI 0.7 to 2.4%, p<0.001) increase in COVID-19 positivity rate. With respect to race, a decrease of 10% in White population is associated with a 1.8% (95% CI 0.8 to 2.8%, p<0.001) increase in positivity rate, while an increase of 10% in Black population is associated with a 1.1% (95% CI 0.3 to 1.8%, p<0.001) increase in positivity rate. The percentage of Hispanic (p=0.718), Asian (p=0.966), or Other (p=0.588) populations were not statistically significant factors. CONCLUSIONS: Our findings indicate associations between neighborhoods with a large dependent youth population, densely populated, low-income, and predominantly black neighborhoods and COVID-19 test positivity rate. The study highlights the importance of public health management during and after the current COVID-19 pandemic. Further work is warranted to fully understand the mechanisms by which these factors may have affected the positivity rate, either in terms of the true number of cases or access to testing.


Assuntos
Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Características de Residência , Fatores Socioeconômicos , Adolescente , Teorema de Bayes , Betacoronavirus , COVID-19 , Criança , Feminino , Humanos , Masculino , Cidade de Nova Iorque/epidemiologia , Pandemias , Pobreza , SARS-CoV-2
18.
J Appl Physiol (1985) ; 127(5): 1453-1468, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31343946

RESUMO

Short-radius centrifugation combined with exercise has been suggested as a potential countermeasure against spaceflight deconditioning. Both the long-term and acute physiological responses to such a combination are incompletely understood. We developed and validated a computational model to study the acute cardiovascular response to centrifugation combined with lower body ergometer exercise. The model consisted of 21 compartments, including the upper body, renal, splanchnic, and leg circulation, as well as a four-chamber heart and pulmonary circulation. It also included the effects of gravity gradient and ergometer exercise. Centrifugation and exercise profiles were simulated and compared with experimental data gathered on 12 subjects exposed to a range of gravitational levels (1 and 1.4G measured at the feet) and workload intensities (25-100 W). The model was capable of reproducing cardiovascular changes (within ± 1 SD from the group-averaged behavior) due to both centrifugation and exercise, including dynamic responses during transitions between the different phases of the protocol. The model was then used to simulate the hemodynamic response of hypovolemic subjects (blood volume reduced by 5-15%) subjected to similar gravitational stress and exercise profiles, providing insights into the physiological responses of experimental conditions not tested before. Hypovolemic results are in agreement with the limited available data and the expected responses based on physiological principles, although additional experimental data are warranted to further validate our predictions, especially during the exercise phases. The model captures the cardiovascular response for a range of centrifugation and exercise profiles, and it shows promise in simulating additional conditions where data collection is difficult, expensive, or infeasible.NEW & NOTEWORTHY Artificial gravity combined with exercise is a potential countermeasure for spaceflight deconditioning, but the long-term and acute cardiovascular response to such gravitational stress is still largely unknown. We provide a novel mathematical model of the cardiovascular system that incorporates gravitational stress generated by centrifugation and lower body cycling exercise, and we validate it with experimental measurements from human subjects. Simulations of experimental conditions not used for model development corroborate the model's predictive capabilities.


Assuntos
Pressão Sanguínea/fisiologia , Centrifugação/métodos , Ergometria/métodos , Exercício Físico/fisiologia , Frequência Cardíaca/fisiologia , Modelos Cardiovasculares , Humanos , Hipovolemia/fisiopatologia , Modelagem Computacional Específica para o Paciente
19.
Front Physiol ; 10: 720, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263424

RESUMO

After more than 50 years of spaceflight, we still do not know what is the appropriate range of gravity levels that are required to maintain normal physiological function in humans. This research effort aimed to investigate musculoskeletal, cardiovascular, and pulmonary responses between 0 and 1 g. A human experiment was conducted to investigate acute physiological outcomes to simulated altered-gravity with and without ergometer exercise using a head-down tilt (HDT)/head-up tilt (HUT) paradigm. A custom tilting platform was built to simulate multiple gravitational loads in the head-to-toe direction (Gz) by tilting the bed to the appropriate angle. Gravity levels included: Microgravity (-6°HDT), Moon (0.17g-Gz at +9.5°HUT), Mars (0.38g-Gz at +22.3°HUT), and Earth (1g-Gz at +90° upright). Fourteen healthy subjects performed an exercise protocol at each simulated gravity level that consisted of three work rates (50W, 75W, 100W) while maintaining a constant cycling rate of 90 rpm. Multiple cardiopulmonary variables were gathered, including volume of oxygen uptake (VO2), volume of carbon dioxide output (VCO2), pulmonary ventilation (VE), tidal volume (VT), respiratory rate (Rf), blood pressure, and heart rate (HR) using a portable metabolic system and a brachial blood pressure cuff. Foot forces were also measured continuously during the protocol. Exercise data were analyzed with repeated-measures ANOVA with Bonferroni correction for multiple comparisons, and regression models were fitted to the experimental data to generate dose-response curves as a function of simulated AG-levels and exercise intensity. Posture showed a main effect in all variables except for systolic blood pressure. In particular, VO2, VCO2, VE, VT, Rf, and HR showed average changes across exercise conditions between Microgravity and 1 g (i.e., per unit of simulated AG) of -97.88 mL/min/g, -95.10 mL/min/g, -3.95 L/min/g, 0.165 L/g, -5.33 breaths/min/g, and 5.05 bpm/g, respectively. In the case of VO2, further pairwise comparisons did not show significant differences between conditions, which was consistent with previous studies using supine and HDT postures. For all variables (except HR), comparisons between Mars and Earth conditions were not statistically different, suggesting that ergometer exercise at a gravitational stress comparable to Mars gravity (∼3/8 g) could provide similar physiological stimuli as cycling under 1 g on Earth.

20.
Front Physiol ; 9: 1492, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483141

RESUMO

Artificial gravity (AG) has often been proposed as an integrated multi-system countermeasure to physiological deconditioning associated with extended exposure to reduced gravity levels, particularly if combined with exercise. Twelve subjects underwent short-radius centrifugation along with bicycle ergometry to quantify the short-term cardiovascular response to AG and exercise across three AG levels (0 G or no rotation, 1 G, and 1.4 G; referenced to the subject's feet and measured in the centripetal direction) and three exercise intensities (25, 50, and 100 W). Continuous cardiovascular measurements were collected during the centrifugation sessions using a non-invasive monitoring system. The cardiovascular responses were more prominent at higher levels of AG and exercise intensity. In particular, cardiac output, stroke volume, pulse pressure, and heart rate significantly increased with both AG level (in most of exercise group combinations, showing averaged increments across exercise conditions of 1.4 L/min/g, 7.6 mL/g, 5.22 mmHg/g, and 2.0 bpm/g, respectively), and workload intensity (averaged increments across AG conditions of 0.09 L/min/W, 0.17 mL/W, 0.22 mmHg/W, and 0.74 bpm/W respectively). These results suggest that the addition of AG to exercise can provide a greater cardiovascular benefit than exercise alone. Hierarchical regression models were fitted to the experimental data to determine dose-response curves of all cardiovascular variables as a function of AG-level and exercise intensity during short-radius centrifugation. These results can inform future studies, decisions, and trade-offs toward potential implementation of AG as a space countermeasure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA