Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065030

RESUMO

Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.

2.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39065731

RESUMO

In this study, we evaluated the physicochemical properties related to the previously reported anticancer activity of a dataset comprising thirty 1,2-dihydropyridine derivatives. We utilized Principal Component Analysis (PCA) to identify the most significant influencing factors. The PCA analysis showed that the first two principal components accounted for 59.91% of the total variance, indicating a strong correlation between the molecules and specific descriptors. Among the 239 descriptors analyzed, 18 were positively correlated with anticancer activity, clustering with the 12 most active compounds based on their IC50 values. Six of these variables-LogP, Csp3, b_1rotN, LogS, TPSA, and lip_don-are related to drug-likeness potential. Thus, we then ranked the 12 compounds according to these six variables and excluded those violating the drug-likeness criteria, resulting in a shortlist of nine compounds. Next, we investigated the binding affinity of these nine shortlisted compounds with the use of molecular docking towards the PIM-1 Kinase enzyme (PDB: 2OBJ), which is overexpressed in various cancer cells. Compound 6 exhibited the best docking score among the docked compounds, with a docking score of -11.77 kcal/mol, compared to -12.08 kcal/mol for the reference PIM-1 kinase inhibitor, 6-(5-bromo-2-hydroxyphenyl)-2-oxo-4-phenyl-1,2-dihydropyridine-3-carbonitrile. To discover new PIM-1 kinase inhibitors, we designed nine novel compounds featuring hybrid structures of compound 6 and the reference inhibitor. Among these, compound 31 displayed the best binding affinity, with a docking score of -13.11 kcal/mol. Additionally, we performed PubChem database mining using the structure of compound 6 and the similarity search tool, identifying 16 structurally related compounds with various reported biological properties. Among these, compound 52 exhibited the best binding affinity, with a docking score of -13.03 kcal/mol. Finally, molecular dynamics (MD) studies were conducted to confirm the stability of the protein-ligand complexes obtained from docking the studied compounds to PIM-1 kinase, validating the potential of these compounds as PIM-1 kinase inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA