Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Nat Commun ; 15(1): 1411, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360829

RESUMO

In the Anthropocene, non-native freshwater fish introductions and translocations have occurred extensively worldwide. However, their global distribution patterns and the factors influencing their establishment remain poorly understood. We analyze a comprehensive database of 14953 freshwater fish species across 3119 river basins and identify global hotspots for exotic and translocated non-native fishes. We show that both types of non-native fishes are more likely to occur when closely related to native fishes. This finding is consistent across measures of phylogenetic relatedness, biogeographical realms, and highly invaded countries, even after accounting for the influence of native diversity. This contradicts Darwin's naturalization hypothesis, suggesting that the presence of close relatives more often signifies suitable habitats than intensified competition, predicting the establishment of non-native fish species. Our study provides a comprehensive assessment of global non-native freshwater fish patterns and their phylogenetic correlates, laying the groundwork for understanding and predicting future fish invasions in freshwater ecosystems.


Assuntos
Ecossistema , Água Doce , Animais , Filogenia , Rios , Peixes , Espécies Introduzidas , Biodiversidade
2.
Sci Total Environ ; 913: 169622, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38157904

RESUMO

A dominant syndrome of the Anthropocene is the rapid worldwide spread of invasive species with devastating environmental and socio-economic impacts. However, the dynamics underlying the impacts of biological invasions remain contested. A hypothesis posits that the richness of impactful invasive species increases proportionally with the richness of non-native species more generally. A competing hypothesis suggests that certain species features disproportionately enhance the chances of non-native species becoming impactful, causing invasive species to arise disproportionately relative to the numbers of non-native species. We test whether invasive species with reported monetary costs reflect global numbers of established non-native species among phyla, classes, and families. Our results reveal that numbers of invasive species with economic costs largely reflect non-native species richness among taxa (i.e., in 96 % of families). However, a few costly taxa were over- and under-represented, and their composition differed among environments and regions. Chordates, nematodes, and pathogenic groups tended to be the most over-represented phyla with reported monetary costs, with mammals, insects, fungi, roundworms, and medically-important microorganisms being over-represented classes. Numbers of costly invasive species increased significantly with non-native richness per taxon, while monetary cost magnitudes at the family level were also significantly related to costly invasive species richness. Costs were biased towards a few 'hyper-costly' taxa (such as termites, mosquitoes, cats, weevils, rodents, ants, and asters). Ordination analysis revealed significant dissimilarity between non-native and costly invasive taxon assemblages. These results highlight taxonomic groups which harbour disproportionately high numbers of costly invasive species and monetary cost magnitudes. Collectively, our findings support prevention of arrival and containment of spread of non-native species as a whole through effective strategies for mitigation of the rapidly amplifying impacts of invasive species. Yet, the hyper- costly taxa identified here should receive greater focus from managers to reduce impacts of current invasive species.


Assuntos
Formigas , Isópteros , Humanos , Animais , Ecossistema , Espécies Introduzidas , Insetos , Biodiversidade , Mamíferos
3.
Sci Rep ; 13(1): 22241, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097682

RESUMO

Brown seaweeds are a rich source of carotenoids, particularly fucoxanthin, which has a wide range of potential health applications. Fucoxanthin fluctuates within and among seaweeds over time, frustrating efforts to utilise this resource. Thus, we require comprehensive analyses of long- and short-term concentrations across species in field conditions. Here, we used High Performance Liquid Chromatography to compare fucoxanthin content in four brown macroalgae, Ascophyllum nodosum, Fucus serratus, Fucus vesiculosus and Saccharina latissima, monthly for 1 year. F. serratus and F. vesiculosus had significantly higher fucoxanthin content (mg/g), which was highest in Spring (0.39 ± 0.04) and Autumn (0.45 ± 0.04) [mean (± SE)]. Two species, A. nodosum and F. serratus, were collected monthly at the same location for a further two non-consecutive years. For both A. nodosum and F. serratus, a significant interaction effect of seasons and years was identified, highlighting that there is variation in fucoxanthin content among and within species over time. We also show that fucoxanthin content differs significantly among months even within seasons. Therefore, it is not sufficient to assess fucoxanthin in single months to represent seasonality. We discuss how weather, nutrients and reproduction may have driven the seasonal variation, and reveal patterns of fucoxanthin concentration that can provide information concerning its availability for many important medical functions.


Assuntos
Ascophyllum , Alga Marinha , Alga Marinha/química , Xantofilas , Ascophyllum/química
4.
Sci Total Environ ; 883: 163582, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37086992

RESUMO

Microplastics are a ubiquitous and persistent form of pollution globally, with impacts cascading from the cellular to ecosystem level. However, there is a paucity in understanding interactions between microplastic pollution with other environmental stressors, and how these could affect ecological functions and services. Freshwater ecosystems are subject to microplastic input from anthropogenic activities (eg. wastewater), but are also simultaneously exposed to many other stressors, particularly reduced dissolved oxygen availability associated with climatic warming and pollutants, as well as biological invasions. Here, we employ the comparative functional response method (CFR; quantifying and comparing organism resource use as a function of resource density) to investigate the relative impact of different microplastic concentrations and oxygen regimes on predatory trophic interactions of a native and an invasive alien gammarid (Gammarus duebeni and Gammarus pulex). No significant effect on trophic interaction strengths was found from very high concentrations of microplastics (200 mp/L and 200,000 mp/L) or low oxygen (40 %) stressors on either species. Additionally, both gammarid species exhibited significant Type II functional responses, with attack rates and handling times not significantly affected by microplastics, oxygen or gammarid invasion status. Thus, both species showed resistance to the simultaneous effects of microplastics and deoxygenation in terms of feeding behaviour. Based on these findings, we suggest that the trophic function, in terms of predation rate, of Gammarus spp. may be sustained under acute bouts of microplastic pollution even in poorly­oxygenated waters. This is the first study to investigate microplastic and deoxygenation interactions and to find no evidence for an interaction on a key invertebrate ecosystem service. We argue that our CFR methods can help understand and predict the future ecological ramifications of microplastics and other stressors across taxa and habitats.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Anfípodes/fisiologia , Ecossistema , Plásticos , Comportamento Predatório , Poluentes Químicos da Água/análise , Monitoramento Ambiental
5.
Freshw Biol ; 67(9): 1559-1570, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36246039

RESUMO

Biological invasions, especially invasive alien aquatic plants, are a major and growing ecological and socioeconomic problem worldwide. Freshwater systems are particularly vulnerable to invasion, where impacts of invasive alien species can damage ecological structure and function. Identifying abiotic and biotic factors that mediate successful invasions is a management priority. Our aim was to determine the environmental correlates of Elodea nuttallii; a globally significant invasive aquatic species. Elodea nuttallii presence/absence (occurrence), extent (patch area) and percentage cover (density) was visually assessed from a boat throughout Lough Erne (approximately 144 km2), County Fermanagh, Northern Ireland during the active summer growth season (July-September). In addition, substrate type and zebra mussel Dreissena polymorpha occurrence was recorded. Fourteen water chemistry variables were collected monthly from 12 recording stations throughout the lake during the 9 years before the survey to spatially interpolate values and establish temporal trajectories in their change. Shoreline land use was derived from CORINE land cover maps. Environmental associations between E. nuttallii, substrate, D. polymorpha, water chemistry and land use were assessed. Elodea nuttallii occurrence was positively associated with water conductivity, alkalinity, suspended solids, phosphorus (both total and soluble) and chlorophyll-a concentrations, but negatively associated with pH and total oxidised nitrogen. E. nuttallii patch extent and proportional cover were positively associated, to varying degrees, with the presence of D. polymorpha, biological oxygen demand, water clarity and soft substrate, but negatively associated with urban development and ammonium. Elodea nuttallii displayed high levels of phenotypic plasticity in response to environmental variation, allowing it to adapt to a wide range of conditions and potentially gain competitive advantage over native or other invasive macrophytes.It is evident that multiple abiotic and biotic factors, including facilitation by co-occurring invasive dreissenid mussels, interact to influence the distribution and abundance of E. nuttallii. Thus, it is necessary to consider a more comprehensive environmental context when planning Elodea management strategies.

6.
Ecol Evol ; 12(9)2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36091340

RESUMO

Rising ocean temperatures are the primary driver of coral reef declines throughout the tropics. Such declines include reductions in coral cover that facilitate the monopolization of the benthos by other taxa such as macroalgae, resulting in reduced habitat complexity and biodiversity. Long-term monitoring projects present rare opportunities to assess how sea surface temperature anomalies (SSTAs) influence changes in the benthic composition of coral reefs across distinct locations. Here, using extensively monitored coral reef sites from Honduras (in the Caribbean Sea), and from the Wakatobi National Park located in the center of the coral triangle of Indonesia, we assess the impact of global warming on coral reef benthic compositions over the period 2012-2019. Bayesian generalized linear mixed effect models revealed increases in the sponge, and hard coral coverage through time, while rubble coverage decreased at the Indonesia location. Conversely, the effect of SSTAs did not predict any changes in benthic coverage. At the Honduras location, algae and soft coral coverage increased through time, while hard coral and rock coverage were decreasing. The effects of SSTA at the Honduras location included increased rock coverage, but reduced sponge coverage, indicating disparate responses between both systems under SSTAs. However, redundancy analyses showed intralocation site variability explained the majority of variance in benthic composition over the course of the study period. Our findings show that SSTAs have differentially influenced the benthic composition between the Honduras and the Indonesian coral reefs surveyed in this study. However, the large intralocation variance that explains the benthic composition at both locations indicates that localized processes have a predominant role in explaining benthic composition over the last decade. The sustained monitoring effort is critical for understanding how these reefs will change in their composition as global temperatures continue to rise through the Anthropocene.

7.
Glob Chang Biol ; 28(19): 5683-5694, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904066

RESUMO

Since Darwin's time, degree of ecological similarity between exotic and native species has been assumed to affect the establishment success or failure of exotic species. However, a direct test of the effect of exotic-native similarity on establishment of exotics is scarce because of the difficulty in recognizing failures of species to establish in the field. Here, using a database on the establishment success and failure of exotic fish species introduced into 673 freshwater lakes, we evaluate the effect of similarity on the establishment of exotic fishes by combining phylogenetic and functional information. We illustrate that, relative to other biotic and abiotic factors, exotic-native phylogenetic and functional similarities were the most important correlates of exotic fish establishment. While phylogenetic similarity between exotic and resident fish species promoted successful establishment, functional similarity led to failure of exotics to become established. Those exotic species phylogenetically close to, but functionally distant from, native fishes were most likely to establish successfully. Our findings provide a perspective to reconcile Darwin's naturalization conundrum and suggest that, while phylogenetic relatedness allows exotic fish species to pre-adapt better to novel environments, they need to possess distinct functional traits to reduce competition with resident native fish species.


Assuntos
Peixes , Espécies Introduzidas , Adaptação Fisiológica , Animais , Ecossistema , Água Doce , Filogenia
9.
Sci Total Environ ; 843: 156876, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35760170

RESUMO

Interactions between multiple invasive alien species (IAS) might increase their ecological impacts, yet relatively few studies have attempted to quantify the effects of facilitative interactions on the success and impact of aquatic IAS. Further, the effect of abiotic factors, such as habitat structure, have lacked consideration in ecological impact prediction for many high-profile IAS, with most data acquired through simplified assessments that do not account for real environmental complexities. In the present study, we assessed a potential facilitative interaction between a predatory invasive fish, the Ponto-Caspian round goby (Neogobius melanostomus), and an invasive bivalve, the Asian clam (Corbicula fluminea). We compared N. melanostomus functional responses (feeding-rates under different prey densities) to a co-occurring endangered European native analogue fish, the bullhead (Cottus gobio), in the presence of increased levels of habitat complexity driven by the accumulation of dead C. fluminea biomass that persists within the environment (i.e. 0, 10, 20 empty bivalve shells). Habitat complexity significantly influenced predation, with consumption in the absence of shells being greater than where 10 or 20 shells were present. However, at the highest shell density, invasive N. melanostomus maximum feeding-rates and functional response ratios were substantially higher than those of native C. gobio. Further, the Relative Impact Potential metric, by combining per capita effects and population abundances, indicated that higher shell densities exacerbate the relative impact of the invader. It therefore appears that N. melanostomus can better tolerate higher IAS shell abundances when foraging at high prey densities, suggesting the occurrence of an important facilitative interaction. Our data are thus fully congruent with field data that link establishment success of N. melanostomus with the presence of C. fluminea. Overall, we show that invader-driven benthic habitat complexity can alter the feeding-rates and thus impacts of predatory fishes, and highlight the importance of inclusion of abiotic factors in impact prediction assessments for IAS.


Assuntos
Bivalves , Peixes , Espécies Introduzidas , Comportamento Predatório , Animais , Ecossistema , Peixes/fisiologia , Comportamento Predatório/fisiologia
10.
BMC Ecol Evol ; 22(1): 58, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508975

RESUMO

BACKGROUND: The rising temperature of the oceans has been identified as the primary driver of mass coral reef declines via coral bleaching (expulsion of photosynthetic endosymbionts). Marine protected areas (MPAs) have been implemented throughout the oceans with the aim of mitigating the impact of local stressors, enhancing fish biomass, and sustaining biodiversity overall. In coral reef regions specifically, protection from local stressors and the enhanced ecosystem function contributed by MPAs are expected to increase coral resistance to global-scale stressors such as marine heatwaves. However, MPAs still suffer from limitations in design, or fail to be adequately enforced, potentially reducing their intended efficacy. Here, we address the hypothesis that the local-scale benefits resulting from MPAs moderate coral bleaching under global warming related stress. RESULTS: Bayesian analyses reveal that bleaching is expected to occur in both larger and older MPAs when corals are under thermal stress from marine heatwaves (quantified as Degree Heating Weeks, DHW), but this is partially moderated in comparison to the effects of DHW alone. Further analyses failed to identify differences in bleaching prevalence in MPAs relative to non-MPAs for coral reefs experiencing different levels of thermal stress. Finally, no difference in temperatures where bleaching occurs between MPA and non-MPA sites was found. CONCLUSIONS: Our findings suggest that bleaching is likely to occur under global warming regardless of protected status. Thus, while protected areas have key roles for maintaining ecosystem function and local livelihoods, combatting the source of global warming remains the best way to prevent the decline of coral reefs via coral bleaching.


Assuntos
Antozoários , Animais , Teorema de Bayes , Recifes de Corais , Ecossistema , Aquecimento Global/prevenção & controle
12.
Sci Rep ; 12(1): 4217, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273306

RESUMO

The Irish Sea is an important area for Norway Lobster Nephrops norvegicus fisheries, which are the most valuable fishing resource in the UK. Norway lobster are known to ingest microplastic pollution present in the sediment and have displayed reduced body mass when exposed to microplastic pollution. Here, we identified microplastic pollution in the Irish Sea fishing grounds through analysis of 24 sediment samples from four sites of differing proximity to the Western Irish Sea Gyre in both 2016 and 2019. We used µFTIR spectroscopy to identify seven polymer types, and a total of 77 microplastics consisting of fibres and fragments. The mean microplastics per gram of sediment ranged from 0.13 to 0.49 and 0 to 1.17 MP/g in 2016 and 2019, respectively. There were no differences in the microplastic counts across years, and there was no correlation of microplastic counts with proximity to the Western Irish Sea Gyre. Considering the consistently high microplastic abundance found in the Irish Sea, and the propensity of N. norvegicus to ingest and be negatively impacted by them, we suggest microplastic pollution levels in the Irish Sea may have adverse impacts on N. norvegicus and negative implications for fishery sustainability in the future.


Assuntos
Decápodes , Poluentes Químicos da Água , Animais , Monitoramento Ambiental/métodos , Caça , Microplásticos/toxicidade , Plásticos , Poluentes Químicos da Água/análise
13.
Ecol Evol ; 12(3): e8500, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342587

RESUMO

The introduction of non-native species to new locations is a growing global phenomenon with major negative effects on native species and biodiversity. Such introductions potentially bring competitors into contact leading to partial or total species replacements. This creates an opportunity to study novel species interactions as they occur, with the potential to address the strength of inter- and intraspecific interactions, most notably competition. Such potential has often not been realized, however, due to the difficulties inherent in detecting rapid and spatially expansive species interactions under natural field conditions. The invasive amphipod crustacean Gammarus pulex has replaced a native species, Gammarus duebeni celticus, in river and lake systems across Europe. This replacement process is at least partially driven by differential parasitism, cannibalism, and intraguild predation, but the role of interspecific competition has yet to be resolved. Here, we examine how abundance of an invasive species may affect spatial niche breadth of a native congeneric species. We base our analyses of niche breadth on ordination and factor analysis of biological community and physical parameters, respectively, constituting a summative, multidimensional approach to niche breadth along environmental gradients. Results derived from biological and environmental niche criteria were consistent, although interspecific effects were stronger using the biological niche approach. We show that the niche breadth of the native species is constrained as abundance of the invader increases, but the converse effect does not occur. We conclude that the interaction between invasive G. pulex and native G. d. celticus under natural conditions is consistent with strong interspecific competition whereby a native, weaker competitor is replaced by a superior invasive competitor. This study indicates a strong role of interspecific competition, alongside other known interactions such as differential intraguild predation, in rapid and expansive species replacements following biological invasions.

14.
Sci Rep ; 12(1): 1757, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110590

RESUMO

Animal behaviour is increasingly recognised as critical to the prediction of non-native species success and impacts. Rainbow trout and brown trout have been introduced globally, but there appear to be differences in their patterns of invasiveness and ecological impact. Here, we investigated whether diploid rainbow trout and diploid and triploid brown trout differ among several key behavioural measures linked to invasiveness and impact. We assessed activity, boldness, aggression, and feeding, using open field, novel object, shelter, mirror, feeding, and functional response experiments. We also tested within each fish type for behavioural syndromes comprising correlations among activity, boldness and aggression. Rainbow trout were more active and aggressive but less bold than diploid and triploid brown trout. In small groups, however, rainbow trout were bolder than both types of brown trout. Diploid brown trout were more active and bolder than triploids when tested individually, and had a higher functional response than both rainbow trout and triploid brown trout. In terms of behavioural syndromes, there was no association between activity and boldness in rainbow trout, however, there was in both brown trout types. The increased activity and aggression of rainbow trout may reflect an increased stress response to novel situations, with this response reduced in a group. These results suggest that rainbow trout do not manage their energy budgets effectively, and may explain why they have limited survival as invaders. In addition, the lower functional response of rainbow trout may explain why they are implicated in fewer ecological impacts, and the triploidy treatment also appears to lower the potential impact of brown trout. Comparative analyses of multiple behaviours of invasive species and genetic variants may thus be key to understanding and predicting invader success and ecological impacts.


Assuntos
Comportamento Animal/fisiologia , Espécies Introduzidas , Truta/fisiologia , Distribuição Animal/fisiologia , Animais , Diploide , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/fisiologia , Fenótipo , Triploidia , Truta/genética
15.
Biol Invasions ; 23(9): 2831-2847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720687

RESUMO

The influence of climate change on the ecological impacts of invasive alien species (IAS) remains understudied, with deoxygenation of aquatic environments often-overlooked as a consequence of climate change. Here, we therefore assessed how oxygen saturation affects the ecological impact of a predatory invasive fish, the Ponto-Caspian round goby (Neogobius melanostomus), relative to a co-occurring endangered European native analogue, the bullhead (Cottus gobio) experiencing decline in the presence of the IAS. In individual trials and mesocosms, we assessed the effect of high, medium and low (90%, 60% and 30%) oxygen saturation on: (1) functional responses (FRs) of the IAS and native, i.e. per capita feeding rates; (2) the impact on prey populations exerted; and (3) how combined impacts of both fishes change over invasion stages (Pre-invasion, Arrival, Replacement, Proliferation). Both species showed Type II potentially destabilising FRs, but at low oxygen saturation, the invader had a significantly higher feeding rate than the native. Relative Impact Potential, combining fish per capita effects and population abundances, revealed that low oxygen saturation exacerbates the high relative impact of the invader. The Relative Total Impact Potential (RTIP), modelling both consumer species' impacts on prey populations in a system, was consistently higher at low oxygen saturation and especially high during invader Proliferation. In the mesocosm experiment, low oxygen lowered RTIP where both species were present, but again the IAS retained high relative impact during Replacement and Proliferation stages at low oxygen. We also found evidence of multiple predator effects, principally antagonism. We highlight the threat posed to native communities by IAS alongside climate-related stressors, but note that solutions may be available to remedy hypoxia and potentially mitigate impacts across invasion stages. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10530-021-02542-3.

16.
R Soc Open Sci ; 8(10): 211089, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34659782

RESUMO

Microplastics are ubiquitous in global marine systems and may have negative impacts on a vast range of species. Recently, microplastics were shown to impair shell selection assessments in hermit crabs, an essential behaviour for their survival. Hermit crabs also engage in 'rapping' contests over shells, based on cognitive assessments of shell quality and opponent fighting ability and, hence, are a useful model species for examining the effects of microplastics on fitness-relevant behaviour in marine systems. Here, we investigated how a 5-day microplastic exposure (25 microplastics/litre) affected the dynamics and outcome of 120 staged hermit crab contests. Using a 2 × 2 factorial design, we examined how microplastics (i.e. presence or absence) and contestant role (i.e. attacker or defender) affected various behavioural variables. Significantly higher raps per bout were needed to evict microplastic-treated defenders when attackers were pre-exposed to control conditions (i.e. no plastic). Also, significantly longer durations of rapping bouts were needed to evict control-treated defenders when attackers were pre-exposed to microplastics. We suggest that microplastics impaired defenders' ability to identify resource holding potential and also affected attackers' rapping strength and intensity during contests. These impacts on animal contests indicate that microplastics have broader deleterious effects on marine biota than currently recognized.

17.
Mar Environ Res ; 172: 105497, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34656016

RESUMO

The frequency and duration of short-term extreme climatic events, such as marine heat waves (MHWs), are increasing worldwide. The rapid onset of MHWs can lead to short-term stress responses in organisms that may have lethal or sub-lethal effects. In addition, increased temperature variability and extremes are predicted to favour and facilitate the spread of non-native species, altering rates of key ecosystem processes and functions. It is possible, however, that compensatory mechanisms, such as increased feeding rates, may enable the maintenance of metabolic functioning and prevent detrimental temperature effects. Using a mesocosm-based approach, we experimentally tested for the effects of MHWs in tidal pools on the mortality, individual length, width and biomass, and respiration rates for both a native oyster, Ostrea edulis, and invasive oyster, Magallana gigas, with or without food supply. No mortality was recorded for either O. edulis or M. gigas for the duration of the four week experiment. Increases in length were greater in O. edulis compared to M. gigas but were not affected by temperature or food supply. Increases in width, however, did not differ between species but were reduced overall in heat wave treatments regardless of food supply. O. edulis gained more biomass than M. gigas in ambient treatments regardless of food supply but, in heat wave treatments, only gained greater biomass than M. gigas at additional levels of food supply. Respiration rates did not reflect changes in temperature or food supply in either species but differed through time, with greater rates post-heat wave in all treatments. Thermal responses of O. edulis and M. gigas to MHWs thus appear to be context dependent and, if food supply is sufficient, O. edulis may be able to maintain its presence in the intertidal. The ability of M. gigas to remain unaffected by fluctuating environmental conditions, however, suggests future resilience of invasive populations to climatic extremes that may result in competitive exclusion and a further decline in native oyster populations. This information is critical for developing effective management plans to ensure the sustainability of natural oyster populations whilst maintaining key ecosystem functioning.


Assuntos
Crassostrea , Ostrea , Animais , Ecossistema , Temperatura Alta , Temperatura
18.
Ecol Evol ; 11(11): 6504-6512, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141235

RESUMO

Predation is a critical ecological process that directly and indirectly mediates population stabilities, as well as ecosystem structure and function. The strength of interactions between predators and prey may be mediated by multiple density dependences concerning numbers of predators and prey. In temporary wetland ecosystems in particular, fluctuating water volumes may alter predation rates through differing search space and prey encounter rates. Using a functional response approach, we examined the influence of predator and prey densities on interaction strengths of the temporary pond specialist copepod Lovenula raynerae preying on cladoceran prey, Daphnia pulex, under contrasting water volumes. Further, using a population dynamic modeling approach, we quantified multiple predator effects across differences in prey density and water volume. Predators exhibited type II functional responses under both water volumes, with significant antagonistic multiple predator effects (i.e., antagonisms) exhibited overall. The strengths of antagonistic interactions were, however, enhanced under reduced water volumes and at intermediate prey densities. These findings indicate important biotic and abiotic contexts that mediate predator-prey dynamics, whereby multiple predator effects are contingent on both prey density and search area characteristics. In particular, reduced search areas (i.e., water volumes) under intermediate prey densities could enhance antagonisms by heightening predator-predator interference effects.

19.
Sci Total Environ ; 779: 146487, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030230

RESUMO

Microplastics may affect the physiology, behaviour and populations of aquatic and terrestrial fauna through many mechanisms, such as direct consumption and sensory disruption. However, the majority of experimental studies have employed questionably high dosages of microplastics that have little environmental relevance. Predation, in particular, is a key trophic interaction that structures populations and communities and influences ecosystem functioning, but rarely features in microplastic research. Here, we quantify the effects of low (~65-114 MP/L) and high (~650-1140 MP/L) microplastic concentrations on the feeding behaviour of a ubiquitous and globally representative key marine predator, the shore crab, Carcinus maenas. We used a functional response approach (predator consumption across prey densities) to determine crab consumption rates towards a key marine community prey species, the blue mussel Mytilus edulis, under low and high microplastic concentrations with acute (8h) and chronic (120h) microplastic exposure times. For both the acute and chronic microplastic exposure experiments, proportional prey consumption by crabs did not differ with respect to microplastic concentration, but significantly decreased over increasing prey densities. The crabs thus displayed classical, hyperbolic Type II functional responses in all experimental groups, characterised by high consumption rates at low prey densities. Crab attack rates, handling times and maximum feeding rates (i.e. functional response curves) were not significantly altered under lower or higher microplastics concentrations, or by acute or chronic microplastic exposures. Here, we show that functional response analyses could be widely employed to ascertain microplastic impacts on consumer-resource interactions. Furthermore, we suggest that future studies should adopt both acute and chronic microplastic exposure regimes, using environmentally-relevant microplastic dosages and types as well as elevated future scenarios of microplastic concentrations.


Assuntos
Braquiúros , Poluentes Químicos da Água , Animais , Ecossistema , Microplásticos , Plásticos , Comportamento Predatório , Poluentes Químicos da Água/análise
20.
Environ Manage ; 68(1): 117-125, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33914093

RESUMO

Suppression of established populations of invasive alien species can be a complex and expensive process, which is frequently unsuccessful. The Asian clam, Corbicula fluminea (Müller, 1774), is considered a high impact invader that can adversely alter freshwater ecosystems and decrease their socioeconomic value. To date, C. fluminea continues to spread and persist within freshwater environments worldwide, despite repeated management attempts to prevent dispersal and suppress established populations. As extensive C. fluminea beds can often become exposed during low-water conditions, the direct application of hot or cold thermal shock treatments has been proposed as suitable mechanism for their control. Further, mechanical substrate disturbance may enhance the efficacy of thermal shock treatments by facilitating exposures to multiple layers of buried clams. In the present study, we advanced these methods by assessing combined applications of both hot and cold thermal shock treatments for control of C. fluminea, using steam spray (≥100 °C; 350 kPa), low- or high-intensity open-flame burns (~1000 °C) and dry ice (-78 °C). In a direct comparison of raking combined with hot thermal shock applications, both steam and high-intensity open-flame treatments tended to be most effective, especially following multiple applications. In addition, when hot thermal treatments are followed by a final cold shock (i.e. dry ice), steam treatments tended to be most effective. Further, when dry ice was applied either alone or prior to an application of a hot shock treatment, substantial if not complete C. fluminea mortality was observed. Overall, this study demonstrated that combined applications of hot and cold thermal shock treatments, applied following the disruption of the substrate, can substantially increase C. fluminea mortality compared to separate hot or cold treatments.


Assuntos
Corbicula , Poluentes Químicos da Água , Animais , Ecossistema , Espécies Introduzidas , Fumaça , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA