Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1621, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424448

RESUMO

Autophagy in eukaryotes functions to maintain homeostasis by degradation and recycling of long-lived and unwanted cellular materials. Autophagy plays important roles in pathogenicity of various fungal pathogens, suggesting that autophagy is a novel target for development of antifungal compounds. Here, we describe bioluminescence resonance energy transfer (BRET)-based high-throughput screening (HTS) strategy to identify compounds that inhibit fungal ATG4 cysteine protease-mediated cleavage of ATG8 that is critical for autophagosome formation. We identified ebselen (EB) and its analogs ebselen oxide (EO) and 2-(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PT) as inhibitors of fungal pathogens Botrytis cinerea and Magnaporthe oryzae ATG4-mediated ATG8 processing. The EB and its analogs inhibit spore germination, hyphal development, and appressorium formation in Ascomycota pathogens, B. cinerea, M. oryzae, Sclerotinia sclerotiorum and Monilinia fructicola. Treatment with EB and its analogs significantly reduced fungal pathogenicity. Our findings provide molecular insights to develop the next generation of antifungal compounds by targeting autophagy in important fungal pathogens.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Virulência , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Esporos Fúngicos
2.
Plant J ; 103(3): 1233-1245, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32390256

RESUMO

Pathogens and other adverse environmental conditions can trigger endoplasmic reticulum (ER) stress. ER stress signaling increases the expression of cytoprotective ER-chaperones. The inositol-requiring enzyme (IRE1) is one ER stress sensor that is activated to splice the bZIP60 mRNA that produces a truncated transcription factor that activates gene expression in the nucleus. The IRE1/bZIP60 pathway is associated with restricting potyvirus and potexvirus infection. This study shows that the Plantago asiatica mosaic virus (PlAMV) triple gene block 3 (TGB3) and the Turnip mosaic virus (TuMV) 6K2 proteins activate alternative transcription pathways involving the bZIP17, bZIP28, BAG7, NAC089 and NAC103 factors in Arabidopsis thaliana. Using the corresponding knockout mutant lines, we show that bZIP17, bZIP60, BAG7 and NAC089 are factors in reducing PlAMV infection, whereas bZIP28 and bZIP60 are factors in reducing TuMV infection. We propose a model in which bZIP60 and bZIP17 synergistically induce genes restricting PlAMV infection, while bZIP60 and bZIP28 independently induce genes supporting PlAMV infection. Regarding TuMV-green fluorescent protein (GFP) infection, bZIP60 and bZIP28 serve to repress local and systemic infection. Finally, tauroursodeoxycholic acid treatments were used to demonstrate that the protein folding capacity significantly influences PlAMV accumulation.


Assuntos
Arabidopsis/virologia , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Doenças das Plantas/virologia , Potexvirus/metabolismo , Potyvirus/metabolismo , Transdução de Sinais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Regulação Viral da Expressão Gênica , Resposta a Proteínas não Dobradas
3.
Front Microbiol ; 10: 685, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024482

RESUMO

The Bcl-2 associated athanogene (BAG) family is an evolutionarily conserved group of co-chaperones that confers stress protection against a variety of cellular insults extending from yeasts, plants to humans. Little is known, however, regarding the biological role of BAG proteins in phytopathogenic fungi. Here, we identified the unique BAG gene (BcBAG1) from the necrotrophic fungal pathogen, Botrytis cinerea. BcBAG1 is the homolog of Arabidopsis thaliana AtBAG4, and ectopic expression of BcBAG1 in atbag4 knock-out mutants restores salt tolerance. BcBAG1 deletion mutants (ΔBcbag1) exhibited decreased conidiation, enhanced melanin accumulation and lost the ability to develop sclerotia. Also, BcBAG1 disruption blocked fungal conidial germination and successful penetration, leading to a reduced virulence in host plants. BcBAG1 contains BAG (BD) domain at C-terminus and ubiquitin-like (UBL) domain at N-terminus. Complementation assays indicated that BD can largely restored pathogenicity of ΔBcbag1. Abiotic stress assays showed ΔBcbag1 was more sensitive than the wild-type strain to NaCl, calcofluor white, SDS, tunicamycin, dithiothreitol (DTT), heat and cold stress, suggesting BcBAG1 plays a cytoprotective role during salt stress, cell wall stress, and ER stress. BcBAG1 negatively regulated the expression of BcBIP1, BcIRE1 and the splicing of BcHAC1 mRNA, which are core regulators of unfolded protein response (UPR) during ER stress. Moreover, BcBAG1 interacted with HSP70-type chaperones, BcBIP1 and BcSKS2. In summary, this work demonstrates that BcBAG1 is pleiotropic and not only essential for fungal development, hyphal melanization, and virulence, but also required for response to multiple abiotic stresses and UPR pathway of B. cinerea.

4.
Plants (Basel) ; 7(3)2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30200279

RESUMO

Drought causes approximately two-thirds of crop and yield loss worldwide. To sustain future generations, there is a need to develop robust crops with enhanced water use efficiency. Resurrection plants are naturally resilient and tolerate up to 95% water loss with the ability to revive upon watering. Stress is genetically encoded and resilient species may garner tolerance by tightly regulating the expression of stress-related genes. MicroRNAs (miRNAs) post-transcriptionally regulate development and other stress response processes in eukaryotes. However, their role in resurrection plant desiccation tolerance is poorly understood. In this study, small RNA sequencing and miRNA expression profiling was conducted using Tripogon loliiformis plants subjected to extreme water deficit conditions. Differentially expressed miRNA profiles, target mRNAs, and their regulatory processes were elucidated. Gene ontology enrichment analysis revealed that development, stress response, and regulation of programmed cell death biological processes; Oxidoreductase and hydrolyase molecular activities; and SPL, MYB, and WRKY transcription factors were targeted by miRNAs during dehydration stress, indicating the indispensable regulatory role of miRNAs in desiccation tolerance. This study provides insights into the molecular mechanisms of desiccation tolerance in the resurrection plant T. loliiformis. This information will be useful in devising strategies for crop improvement on enhanced drought tolerance and water use efficiency.

5.
Microb Cell ; 5(1): 4-31, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29354647

RESUMO

Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi-nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differ-ential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death rou-tines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the au-thors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the pro-gress of this vibrant field of research.

6.
Plant Cell ; 28(1): 233-47, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26739014

RESUMO

The Bcl-2-associated athanogene (BAG) family is an evolutionarily conserved group of cochaperones that modulate numerous cellular processes. Previously we found that Arabidopsis thaliana BAG6 is required for basal immunity against the fungal phytopathogen Botrytis cinerea. However, the mechanisms by which BAG6 controls immunity are obscure. Here, we address this important question by determining the molecular mechanisms responsible for BAG6-mediated basal resistance. We show that Arabidopsis BAG6 is cleaved in vivo in a caspase-1-like-dependent manner and via a combination of pull-downs, mass spectrometry, yeast two-hybrid assays, and chemical genomics, we demonstrate that BAG6 interacts with a C2 GRAM domain protein (BAGP1) and an aspartyl protease (APCB1), both of which are required for BAG6 processing. Furthermore, fluorescence and transmission electron microscopy established that BAG6 cleavage triggers autophagy in the host that coincides with disease resistance. Targeted inactivation of BAGP1 or APCB1 results in the blocking of BAG6 processing and loss of resistance. Mutation of the cleavage site blocks cleavage and inhibits autophagy in plants; disease resistance is also compromised. Taken together, these results identify a mechanism that couples an aspartyl protease with a molecular cochaperone to trigger autophagy and plant defense, providing a key link between fungal recognition and the induction of cell death and resistance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/microbiologia , Ácido Aspártico Proteases/metabolismo , Autofagia , Botrytis/fisiologia , Resistência à Doença , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Botrytis/crescimento & desenvolvimento , Caspase 1/metabolismo , Humanos , Chaperonas Moleculares/genética , Mutação/genética , Proteínas Nucleares/genética , Fenótipo , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Nicotiana/genética
7.
Microb Cell ; 3(5): 224-226, 2016 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-28358147

RESUMO

The Bcl-2-associated athanogene (BAG) family is a multifunctional group of proteins involved in numerous cellular functions ranging from apoptosis to tumorigenesis. These proteins are evolutionarily conserved and encode a characteristic region known as the BAG domain. BAGs function as adapter proteins forming complexes with signaling molecules and molecular chaperones. In humans, a role for BAG proteins has been suggested in tumor growth, HIV infection, and neurodegenerative diseases; as a result, the BAGs are attractive targets for therapeutic interventions, and their expression in cells may serve as a predictive tool for disease development. The Arabidopsis genome contains seven homologs of BAG family proteins (Figure 1), including four with a domain organization similar to animal BAGs (BAG1-4). The remaining three members (BAG5-7) contain a predicted calmodulin-binding motif near the BAG domain, a feature unique to plant BAG proteins that possibly reflects divergent mechanisms associated with plant-specific functions. As reported for animal BAGs, plant BAGs also regulate several stress and developmental processes (Figure 2). The recent article by Li et al. focuses on the role of BAG6 in plant innate immunity. This study shows that BAG6 plays a key role in basal plant defense against fungal pathogens. Importantly, this work further shows that BAG6 is proteolytically activated to induce autophagic cell death and resistance in plants. This finding underscores the importance of proteases in the execution of plant cell death, yet little is known about proteases and their substrates in plants.

8.
PLoS Genet ; 11(12): e1005705, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26633550

RESUMO

Global climate change, increasingly erratic weather and a burgeoning global population are significant threats to the sustainability of future crop production. There is an urgent need for the development of robust measures that enable crops to withstand the uncertainty of climate change whilst still producing maximum yields. Resurrection plants possess the unique ability to withstand desiccation for prolonged periods, can be restored upon watering and represent great potential for the development of stress tolerant crops. Here, we describe the remarkable stress characteristics of Tripogon loliiformis, an uncharacterised resurrection grass and close relative of the economically important cereals, rice, sorghum, and maize. We show that T. loliiformis survives extreme environmental stress by implementing autophagy to prevent Programmed Cell Death. Notably, we identified a novel role for trehalose in the regulation of autophagy in T.loliiformis. Transcriptome, Gas Chromatography Mass Spectrometry, immunoblotting and confocal microscopy analyses directly linked the accumulation of trehalose with the onset of autophagy in dehydrating and desiccated T. loliiformis shoots. These results were supported in vitro with the observation of autophagosomes in trehalose treated T. loliiformis leaves; autophagosomes were not detected in untreated samples. Presumably, once induced, autophagy promotes desiccation tolerance in T.loliiformis, by removal of cellular toxins to suppress programmed cell death and the recycling of nutrients to delay the onset of senescence. These findings illustrate how resurrection plants manipulate sugar metabolism to promote desiccation tolerance and may provide candidate genes that are potentially useful for the development of stress tolerant crops.


Assuntos
Autofagia/genética , Craterostigma/crescimento & desenvolvimento , Transcriptoma/genética , Trealose/metabolismo , Mudança Climática , Craterostigma/genética , Dessecação , Oryza , Folhas de Planta/genética , Folhas de Planta/metabolismo , Poaceae/genética , Estresse Fisiológico/genética , Trealose/genética , Água
9.
Plant Sci ; 233: 53-60, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25711813

RESUMO

Plants and fungi have had many years of friendly and not-so friendly competition for resources and quality of life. As a result, diverse pathosystems evolved numerous strategies, coupled with the emergence of multifaceted pathogenic and saprophytic lifestyles. We discuss fungal lifestyle classifications and how the views associated with certain fungal pathogens, particularly necrotophs, are changing as we learn more about the complexities of their interactions with a given host plant. We discuss the physiological events leading to the transition from biotrophy to necrotrophy in hemi-biotrophs, and conclude that both the control of plant immune responses and the need for a more efficient mode of nutrient acquisition are possible triggers for the transition to necrotrophy. Based on recent findings, we focus on the polyphagous plant pathogen Sclerotinia sclerotiorum. Rather than overwhelming plant foes, S. sclerotiorum has evolved clever means to compromise host recognition and establish disease, resulting in a broad and immensely successful pathogenic lifestyle. The tactics used by this fungus to achieve pathogenic success are being clarified. We propose that the hemi-biotrophic lifestyle may be more temporally and spatially complex than currently depicted, and that combining lifestyle attributes with damage response curves that consider the contribution of both the fungus and the host to pathogenesis, may provide a more holistic manner to view plant pathogens.


Assuntos
Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Plantas/microbiologia
10.
Plant Sci ; 228: 61-70, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25438786

RESUMO

The soilborne necrotrophic pathogens Rhizoctonia and Pythium infect a wide range of crops in the US and worldwide. These pathogens pose challenges to growers because the diseases they cause are not adequately controlled by fungicides, rotation or, for many hosts, natural genetic resistance. Although a combination of management practices are likely to be required for control of Rhizoctonia and Pythium, genetic resistance remains a key missing component. This review discusses the recent deployment of introduced genes and genome-based information for control of Rhizoctonia, with emphasis on three pathosystems: Rhizoctonia solani AG8 and wheat, R. solani AG1-IA and rice, and R. solani AG3 or AG4 and potato. Molecular mechanisms underlying disease suppression will be addressed, if appropriate. Although less is known about genes and factors suppressive to Pythium, pathogen genomics and biological control studies are providing useful leads to effectors and antifungal factors. Prospects for resistance to Rhizoctonia and Pythium spp. will continue to improve with growing knowledge of pathogenicity strategies, host defense gene action relative to the pathogen infection process, and the role of environmental factors on pathogen-host interactions.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/prevenção & controle , Plantas Comestíveis/microbiologia , Pythium , Rhizoctonia , Genoma Fúngico , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Plantas Comestíveis/genética , Transgenes
11.
J Biol Chem ; 289(40): 27794-806, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25112878

RESUMO

The amino acid proline is uniquely involved in cellular processes that underlie stress response in a variety of organisms. Proline is known to minimize protein aggregation, but a detailed study of how proline impacts cell survival during accumulation of misfolded proteins in the endoplasmic reticulum (ER) has not been performed. To address this we examined in Saccharomyces cerevisiae the effect of knocking out the PRO1, PRO2, and PRO3 genes responsible for proline biosynthesis. The null mutants pro1, pro2, and pro3 were shown to have increased sensitivity to ER stress relative to wild-type cells, which could be restored by proline or the corresponding genetic complementation. Of these mutants, pro3 was the most sensitive to tunicamycin and was rescued by anaerobic growth conditions or reduced thiol reagents. The pro3 mutant cells have higher intracellular reactive oxygen species, total glutathione, and a NADP(+)/NADPH ratio than wild-type cells under limiting proline conditions. Depletion of proline biosynthesis also inhibits the unfolded protein response (UPR) indicating proline protection involves the UPR. To more broadly test the role of proline in ER stress, increased proline biosynthesis was shown to partially rescue the ER stress sensitivity of a hog1 null mutant in which the high osmolality pathway is disrupted.


Assuntos
Estresse do Retículo Endoplasmático , Prolina/biossíntese , Saccharomyces cerevisiae/metabolismo , NADP/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Pirrolina Carboxilato Redutases/genética , Pirrolina Carboxilato Redutases/metabolismo , Saccharomyces cerevisiae/genética , Resposta a Proteínas não Dobradas , delta-1-Pirrolina-5-Carboxilato Redutase
12.
Front Plant Sci ; 5: 211, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24926295

RESUMO

The endoplasmic reticulum (ER) is the central organelle in the eukaryotic secretory pathway. The ER functions in protein synthesis and maturation and is crucial for proper maintenance of cellular homeostasis and adaptation to adverse environments. Acting as a cellular sentinel, the ER is exquisitely sensitive to changing environments principally via the ER quality control machinery. When perturbed, ER-stress triggers a tightly regulated and highly conserved, signal transduction pathway known as the unfolded protein response (UPR) that prevents the dangerous accumulation of unfolded/misfolded proteins. In situations where excessive UPR activity surpasses threshold levels, cells deteriorate and eventually trigger programmed cell death (PCD) as a way for the organism to cope with dysfunctional or toxic signals. The programmed cell death that results from excessive ER stress in mammalian systems contributes to several important diseases including hypoxia, neurodegeneration, and diabetes. Importantly, hallmark features and markers of cell death that are associated with ER stress in mammals are also found in plants. In particular, there is a common, conserved set of chaperones that modulate ER cell death signaling. Here we review the elements of plant cell death responses to ER stress and note that an increasing number of plant-pathogen interactions are being identified in which the host ER is targeted by plant pathogens to establish compatibility.

14.
Annu Rev Phytopathol ; 51: 543-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23915134

RESUMO

Programmed cell death (PCD) is essential for proper growth, development, and cellular homeostasis in all eukaryotes. The regulation of PCD is of central importance in plant-microbe interactions; notably, PCD and features associated with PCD are observed in many host resistance responses. Conversely, pathogen induction of inappropriate cell death in the host results in a susceptible phenotype and disease. Thus, the party in control of PCD has a distinct advantage in these battles. PCD processes appear to be of ancient origin, as indicated by the fact that many features of cell death strategy are conserved between animals and plants; however, some of the details of death execution differ. Mammalian core PCD genes, such as caspases, are not present in plant genomes. Similarly, pro- and antiapoptotic mammalian regulatory elements are absent in plants, but, remarkably, when expressed in plants, successfully impact plant PCD. Thus, subtle structural similarities independent of sequence homology appear to sustain operational equivalence. The vacuole is emerging as a key organelle in the modulation of plant PCD. Under different signals for cell death, the vacuole either fuses with the plasmalemma membrane or disintegrates. Moreover, the vacuole appears to play a key role in autophagy; evidence suggests a prosurvival function for autophagy, but other studies propose a prodeath phenotype. Here, we describe and discuss what we know and what we do not know about various PCD pathways and how the host integrates signals to activate salicylic acid and reactive oxygen pathways that orchestrate cell death. We suggest that it is not cell death as such but rather the processes leading to cell death that contribute to the outcome of a given plant-pathogen interaction.


Assuntos
Morte Celular , Interações Hospedeiro-Patógeno , Células Vegetais/fisiologia , Apoptose , Autofagia , Modelos Biológicos , Organelas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Vacúolos/metabolismo
16.
PLoS Pathog ; 9(4): e1003287, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23592997

RESUMO

Programmed cell death is characterized by a cascade of tightly controlled events that culminate in the orchestrated death of the cell. In multicellular organisms autophagy and apoptosis are recognized as two principal means by which these genetically determined cell deaths occur. During plant-microbe interactions cell death programs can mediate both resistant and susceptible events. Via oxalic acid (OA), the necrotrophic phytopathogen Sclerotinia sclerotiorum hijacks host pathways and induces cell death in host plant tissue resulting in hallmark apoptotic features in a time and dose dependent manner. OA-deficient mutants are non-pathogenic and trigger a restricted cell death phenotype in the host that unexpectedly exhibits markers associated with the plant hypersensitive response including callose deposition and a pronounced oxidative burst, suggesting the plant can recognize and in this case respond, defensively. The details of this plant directed restrictive cell death associated with OA deficient mutants is the focus of this work. Using a combination of electron and fluorescence microscopy, chemical effectors and reverse genetics, we show that this restricted cell death is autophagic. Inhibition of autophagy rescued the non-pathogenic mutant phenotype. These findings indicate that autophagy is a defense response in this necrotrophic fungus/plant interaction and suggest a novel function associated with OA; namely, the suppression of autophagy. These data suggest that not all cell deaths are equivalent, and though programmed cell death occurs in both situations, the outcome is predicated on who is in control of the cell death machinery. Based on our data, we suggest that it is not cell death per se that dictates the outcome of certain plant-microbe interactions, but the manner by which cell death occurs that is crucial.


Assuntos
Apoptose/genética , Arabidopsis/microbiologia , Ascomicetos/patogenicidade , Autofagia/genética , Doenças das Plantas/microbiologia , Adenina/análogos & derivados , Adenina/farmacologia , Androstadienos/farmacologia , Antifúngicos/farmacologia , Apoptose/efeitos dos fármacos , Ascomicetos/genética , Ascomicetos/metabolismo , Autofagia/efeitos dos fármacos , Cloroquina/farmacologia , Cromonas/farmacologia , Interações Hospedeiro-Patógeno , Morfolinas/farmacologia , Micoses , Ácido Oxálico/metabolismo , Espécies Reativas de Oxigênio , Explosão Respiratória/genética , Wortmanina
17.
Mol Plant Pathol ; 14(3): 241-55, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23458484

RESUMO

The Potato virus X (PVX) triple gene block protein 3 (TGBp3), an 8-kDa membrane binding protein, aids virus movement and induces the unfolded protein response (UPR) during PVX infection. TGBp3 was expressed from the Tobacco mosaic virus (TMV) genome (TMV-p3), and we noted the up-regulation of SKP1 and several endoplasmic reticulum (ER)-resident chaperones, including the ER luminal binding protein (BiP), protein disulphide isomerase (PDI), calreticulin (CRT) and calmodulin (CAM). Local lesions were seen on leaves inoculated with TMV-p3, but not TMV or PVX. Such lesions were the result of TGBp3-elicited programmed cell death (PCD), as shown by an increase in reactive oxygen species, DNA fragmentation and induction of SKP1 expression. UPR-related gene expression occurred within 8 h of TMV-p3 inoculation and declined before the onset of PCD. TGBp3-mediated cell death was suppressed in plants that overexpressed BiP, indicating that UPR induction by TGBp3 is a pro-survival mechanism. Anti-apoptotic genes Bcl-xl, CED-9 and Op-IAP were expressed in transgenic plants and suppressed N gene-mediated resistance to TMV, but failed to alleviate TGBp3-induced PCD. However, TGBp3-mediated cell death was reduced in SKP1-silenced Nicotiana benthamiana plants. The combined data suggest that TGBp3 triggers the UPR and elicits PCD in plants.


Assuntos
Apoptose/fisiologia , Potexvirus/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Proteínas Virais/metabolismo , Apoptose/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Potexvirus/genética , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo , Resposta a Proteínas não Dobradas/genética , Proteínas Virais/genética
18.
PLoS One ; 8(1): e53901, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23342034

RESUMO

SSITL (SS1G_14133) of Sclerotinia sclerotiorum encodes a protein with 302 amino acid residues including a signal peptide, its secretion property was confirmed with immunolocalization and immunofluorescence techniques. SSITL was classified in the integrin alpha N-terminal domain superfamily, and its 3D structure is similar to those of human integrin α4-subunit and a fungal integrin-like protein. When S. sclerotiorum was inoculated to its host, high expression of SSITL was detected during the initial stages of infection (1.5-3.0 hpi). Targeted silencing of SSITL resulted in a significant reduction in virulence; on the other hand, inoculation of SSITL silenced transformant A10 initiated strong and rapid defense response in Arabidopsis, the highest expressions of defense genes PDF1.2 and PR-1 appeared at 3 hpi which was 9 hr earlier than that time when plants were inoculated with the wild-type strain of S. sclerotiorum. Systemic resistance induced by A10 was detected by analysis of the expression of PDF1.2 and PR-1, and confirmed following inoculation with Botrytis cinerea. A10 induced much larger lesions on Arabidopsis mutant ein2 and jar1, and slightly larger lesions on mutant pad4 and NahG in comparison with the wild-type plants. Furthermore, both transient and constitutive expression of SSITL in Arabidopsis suppressed the expression of PDF1.2 and led to be more susceptible to A10 and the wild-type strain of S. sclerotiorum and B. cinerea. Our results suggested that SSITL is an effector possibly and plays significant role in the suppression of jasmonic/ethylene (JA/ET) signal pathway mediated resistance at the early stage of infection.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Ascomicetos/fisiologia , Resistência à Doença , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Sequência de Aminoácidos , Ascomicetos/citologia , Ascomicetos/genética , Ascomicetos/metabolismo , Parede Celular/metabolismo , Espaço Extracelular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Células HeLa , Humanos , Integrinas/química , Modelos Moleculares , Dados de Sequência Molecular , Fenótipo , Doenças das Plantas/microbiologia , Conformação Proteica
20.
Plant Cell ; 23(11): 4146-63, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22128123

RESUMO

Abscission occurs specifically in the abscission zone (AZ) tissue as a natural stage of plant development. Previously, we observed delay of tomato (Solanum lycopersicum) leaf abscission when the LX ribonuclease (LX) was inhibited. The known association between LX expression and programmed cell death (PCD) suggested involvement of PCD in abscission. In this study, hallmarks of PCD were identified in the tomato leaf and flower AZs during the late stage of abscission. These included loss of cell viability, altered nuclear morphology, DNA fragmentation, elevated levels of reactive oxygen species and enzymatic activities, and expression of PCD-associated genes. Overexpression of antiapoptotic proteins resulted in retarded abscission, indicating PCD requirement. PCD, LX, and nuclease gene expression were visualized primarily in the AZ distal tissue, demonstrating an asymmetry between the two AZ sides. Asymmetric expression was observed for genes associated with cell wall hydrolysis, leading to AZ, or associated with ethylene biosynthesis, which induces abscission. These results suggest that different abscission-related processes occur asymmetrically between the AZ proximal and distal sides. Taken together, our findings identify PCD as a key mechanism that occurs asymmetrically during normal progression of abscission and suggest an important role for LX in this PCD process.


Assuntos
Flores/fisiologia , Folhas de Planta/fisiologia , Solanum lycopersicum/citologia , Apoptose , Sobrevivência Celular , Fragmentação do DNA , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Etilenos/metabolismo , Flores/citologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/fisiologia , Dados de Sequência Molecular , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Folhas de Planta/citologia , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA