Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5566, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552098

RESUMO

Perovskite photovoltaics advance rapidly, but questions remain regarding point defects: while experiments have detected the presence of electrically active defects no experimentally confirmed microscopic identifications have been reported. Here we identify lead monovacancy (VPb) defects in MAPbI3 (MA = CH3NH3+) using positron annihilation lifetime spectroscopy with the aid of density functional theory. Experiments on thin film and single crystal samples all exhibited dominant positron trapping to lead vacancy defects, and a minimum defect density of ~3 × 1015 cm-3 was determined. There was also evidence of trapping at the vacancy complex [Formula: see text] in a minority of samples, but no trapping to MA-ion vacancies was observed. Our experimental results support the predictions of other first-principles studies that deep level, hole trapping, [Formula: see text], point defects are one of the most stable defects in MAPbI3. This direct detection and identification of a deep level native defect in a halide perovskite, at technologically relevant concentrations, will enable further investigation of defect driven mechanisms.

2.
iScience ; 24(2): 102095, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33659871

RESUMO

There is no efficient wastewater treatment solution for removing organic micropollutants (OMPs), which, therefore, are continuously introduced to the Earth's surface waters. This creates a severe risk to aquatic ecosystems and human health. In emerging water treatment processes based on ion-exchange membranes (IEM), transport of OMPs through membranes remains unknown. We performed a comprehensive investigation of the OMP transport through a single IEM under non-steady-state conditions. For the first time, positron annihilation lifetime spectroscopy was used to study differences in the free volume element radius between anion- and cation-exchange membranes, and between their thicknesses. The dynamic diffusion-adsorption model was used to calculate the adsorption and diffusion coefficients of OMPs. Remarkably, diffusion coefficients increased with the membrane thickness, where its surface resistance was more evident in thinner membranes. Presented results will contribute to the improved design of next-generation IEMs with higher selectivity toward multiple types of organic compounds.

3.
Adv Mater ; 33(17): e2006993, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33733524

RESUMO

Thin films of crystalline and porous metal-organic frameworks (MOFs) have great potential in membranes, sensors, and microelectronic chips. While the morphology and crystallinity of MOF films can be evaluated using widely available techniques, characterizing their pore size, pore volume, and specific surface area is challenging due to the low amount of material and substrate effects. Positron annihilation lifetime spectroscopy (PALS) is introduced as a powerful method to obtain pore size information and depth profiling in MOF films. The complementarity of this approach to established physisorption-based methods such as quartz crystal microbalance (QCM) gravimetry, ellipsometric porosimetry (EP), and Kr physisorption (KrP) is illustrated. This comprehensive discussion on MOF thin film porosimetry is supported by experimental data for thin films of ZIF-8.

4.
Water Res ; 190: 116756, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33387949

RESUMO

Ion-exchange membrane (IEM)-based processes are used in the industry or in the drinking water production to achieve selective separation. The transport mechanisms of organic solutes/micropollutants (i.e., paracetamol, clofibric acid, and atenolol) at a single-membrane level in diffusion cells were similar to that of salts (i.e., diffusion, convection, and electromigration). The presence of an equal concentration of salts at both sides of the membrane slightly decreased the transport of organics due to lower diffusion coefficients of organics in salts and the increase of hindrance and/or decrease of partitioning in the membrane phase. In the presence of a salt gradient, diffusion was the main transport mechanism for non-charged organics, while the counter-transport of salts promoted the transport of charged organics through electromigration (electroneutrality). Conversely, the co-transport of salts hindered the transport of charged organics, where diffusion was the main transport mechanism of the latter. Although convection played a role in the transport of non-charged organics, its influence on the charged solutes was minimal due to the dominant electromigration. Positron annihilation lifetime spectroscopy showed a bimodal size distribution of free-volume elements of IEMs, with both classes of free-volume elements contributing to salt transport, while larger organics can only transport through the larger class.


Assuntos
Água Potável , Difusão , Troca Iônica , Soluções , Solventes
5.
Angew Chem Int Ed Engl ; 60(14): 7553-7558, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33350565

RESUMO

The landscape of possible polymorphs for some metal-organic frameworks (MOFs) can pose a challenge for controlling the outcome of their syntheses. Demonstrated here is the use of a template to control in the vapor-assisted formation of zeolitic imidazolate framework (ZIF) powders and thin films. Introducing a small amount of either ethanol or dimethylformamide vapor during the reaction between ZnO and 4,5-dichloroimidazole vapor results in the formation of the porous ZIF-71 phase, whereas other conditions lead to the formation of the dense ZIF-72 phase or amorphous materials. Time-resolved in situ small-angle X-ray scattering reveals that the porous phase is metastable and can be transformed into its dense polymorph. This transformation is avoided through the introduction of template vapor. The porosity of the resulting ZIF powders and films was studied by N2 and Kr physisorption, as well as positron annihilation lifetime spectroscopy. The templating principle was demonstrated for other members of the ZIF family as well, including the ZIF-7 series, ZIF-8_Cl, and ZIF-8_Br.

6.
ACS Nano ; 14(12): 17174-17183, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33216546

RESUMO

Polymer membranes are critical to many sustainability applications that require the size-based separation of gas mixtures. Despite their ubiquity, there is a continuing need to selectively affect the transport of different mixture components while enhancing mechanical strength and hindering aging. Polymer-grafted nanoparticles (GNPs) have recently been explored in the context of gas separations. Membranes made from pure GNPs have higher gas permeability and lower selectivity relative to the neat polymer because they have increased mean free volume. Going beyond this ability to manipulate the mean free volume by grafting chains to a nanoparticle, the conceptual advance of the present work is our finding that GNPs are spatially heterogeneous transport media, with this free volume distribution being easily manipulated by the addition of free polymer. In particular, adding a small amount of appropriately chosen free polymer can increase the membrane gas selectivity by up to two orders of magnitude while only moderately reducing small gas permeability. Added short free chains, which are homogeneously distributed in the polymer layer of the GNP, reduce the permeability of all gases but yield no dramatic increases in selectivity. In contrast, free chains with length comparable to the grafts, which populate the interstitial pockets between GNPs, preferentially hinder the transport of the larger gas and thus result in large selectivity increases. This work thus establishes that we can favorably manipulate the selective gas transport properties of GNP membranes through the entropic effects associated with the addition of free chains.

7.
Chemistry ; 26(47): 10841-10848, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32476184

RESUMO

Energy-efficient indoors temperature and humidity control can be realised by using the reversible adsorption and desorption of water in porous materials. Stable microporous aluminium-based metal-organic frameworks (MOFs) present promising water sorption properties for this goal. The development of synthesis routes that make use of available and affordable building blocks and avoid the use of organic solvents is crucial to advance this field. In this work, two scalable synthesis routes under mild reaction conditions were developed for aluminium-based MOFs: (1) in aqueous solutions using a continuous-flow reactor and (2) through the vapour-assisted conversion of solid precursors. Fumaric acid, its methylated analogue mesaconic acid, as well as mixtures of the two were used as linkers to obtain polymorph materials with tuneable water sorption properties. The synthesis conditions determine the crystal structure and either the MIL-53 or MIL-68 type structure with square-grid or kagome-grid topology, respectively, is formed. Fine-tuning resulted in new MOF materials thus far inaccessible through conventional synthesis routes. Furthermore, by varying the linker ratio, the water sorption properties can be continuously adjusted while retaining the sigmoidal isotherm shape advantageous for heat transformation and room climatisation applications.

8.
Membranes (Basel) ; 10(3)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197524

RESUMO

The morphology of thin film composite (TFC) membranes used in reverse osmosis (RO) and nanofiltration (NF) water treatment was explored with small-angle neutron scattering (SANS) and positron-annihilation lifetime spectroscopy (PALS). The combination of both methods allowed the characterization of the bulk porous structure from a few Å to µm in radius. PALS shows pores of 4.5 Å average radius in a surface layer of about 4 m thickness, which become 40% smaller at the free surface of the membranes. This observation may correlate with the glass state of the involved polymer. Pores of similar size appear in SANS as closely packed pores of 6 Å radius distributed with an average distance of 30 Å. The main effort of SANS was the characterization of the morphology of the porous polysulfone support layer as well as the fibers of the nonwoven fabric layer. Contrast variation using the media H2O/D2O and supercritical CO2 and CD4 identified the polymers of the support layers as well as internal heterogeneities.

9.
Angew Chem Int Ed Engl ; 58(8): 2423-2427, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30548136

RESUMO

Metal-organic frameworks (MOFs) enable the design of host-guest systems with specific properties. In this work, we show how the confinement of anthracene in a well-chosen MOF host leads to reversible yellow-to-purple photoswitching of the fluorescence emission. This behavior has not been observed before for anthracene, either in pure form or adsorbed in other porous hosts. The photoresponse of the host-guest system is caused by the photodimerization of anthracene, which is greatly facilitated by the pore geometry, connectivity, and volume as well as the structural flexibility of the MOF host. The photoswitching behavior was used to fabricate photopatternable and erasable surfaces that, in combination with data encryption and decryption, hold promise in product authentication and secure communication applications.

10.
Phys Chem Chem Phys ; 20(44): 28287-28299, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30398493

RESUMO

Two processes for crosslinking polyvinyl alcohol (PVA) with sulfosuccinic acid (SSA) and thermal crosslinking were used to fabricate a proton exchange membrane (PEM). Such PEMs are used in different fields involving fuel cell applications. The crosslinking reaction between PVA and SSA was confirmed using Fourier-transform infrared (FTIR) spectroscopy. The characterization of the prepared membranes, namely, ion exchange capacity (IEC), thermal analyses, water uptake, and ionic conductivity, was carried out. The IEC of the prepared membranes was found to be between 0.084 and 2.086 mmol g-1, resulting in an essential increase in the ionic conductivity. It was observed that the ionic conductivity was in the range of 0.003-0.023 S cm-1, depending on both temperature and SSA content. From the thermogravimetric analysis (TGA) results, it was revealed that the thermal stability of the crosslinked membranes improved. Moreover, water uptake decreased with increasing SSA content. Positron annihilation lifetime spectroscopy (PALS) was used to study the microstructure of the PVA/SSA membranes and their distribution at different ambient temperatures and relative humidity (RH) values. At room temperature, no significant change was observed in the free-volume holes up to 15 wt% SSA; thereafter, the size of the free-volume holes increased with the SSA content. The PALS results show that at different humidity values, the size of the free-volume holes for crosslinked PVA/SSA membranes is lower than those for Nafion membranes, i.e., the gas permeability for the prepared PVA/SSA membranes is less than that for the Nafion membrane. In addition, a strong correlation between the water uptake, ionic conductivity, tensile strength, and free-volume holes was observed.

11.
Phys Rev Lett ; 121(5): 057401, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118267

RESUMO

Previous studies have shown that positron-annihilation spectroscopy is a highly sensitive probe of the electronic structure and surface composition of ligand-capped semiconductor quantum dots (QDs) embedded in thin films. The nature of the associated positron state, however, whether the positron is confined inside the QDs or localized at their surfaces, has so far remained unresolved. Our positron-annihilation lifetime spectroscopy studies of CdSe QDs reveal the presence of a strong lifetime component in the narrow range of 358-371 ps, indicating abundant trapping and annihilation of positrons at the surfaces of the QDs. Furthermore, our ab initio calculations of the positron wave function and lifetime employing a recent formulation of the weighted density approximation demonstrate the presence of a positron surface state and predict positron lifetimes close to experimental values. Our study thus resolves the long-standing question regarding the nature of the positron state in semiconductor QDs and opens the way to extract quantitative information on surface composition and ligand-surface interactions of colloidal semiconductor QDs through highly sensitive positron-annihilation techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA