Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nematol ; 56(1): 20240012, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38650602

RESUMO

Infective second-stage juveniles (J2) of Meloidogyne spp. migrate towards host roots, which depends on several factors, including root exudates and soil temperature. Although Meloidogyne enterolobii is a highly virulent nematode that affects major agricultural crops worldwide, there is limited ecological data about it. The objective of this study was to determine the J2 migration pattern vertically in 14-cm long segmented soil columns towards tomato (Solanum lycopersicum) and marigold (Tagetes patula) roots, each grown at two soil temperatures (20 or 26ºC). Bottomless cups with tomatoes or marigolds were attached to the top of each column; cups with no plants were used as untreated controls. Juveniles (1,000/column) were injected into a hole located 1 cm from the bottom of each column. The apparatuses were placed in growth chambers at 20 or 26ºC, and J2 were allowed to migrate for 3, 6, 9, or 12 days after injection (DAI). At each harvest, J2 were extracted from each ring of the columns and counted to compare their distribution, and root systems were stained to observe root penetration. M. enterolobii migrated over 13 cm vertically 3 DAI regardless of temperature, even without plant stimuli. The vertical migration was greater at 26ºC, where 60% of active J2 were found at distances >13 cm at 12 DAI. Temperature did not affect root penetration. Overall, a greater number of J2 was observed in tomato roots, and root penetration increased over time.

2.
J Nematol ; 54(1): 20220013, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35860510

RESUMO

Meloidogyne enterolobii and M. floridensis are virulent species that can overcome root-knot nematode resistance in economically important crops. Our objectives were to determine the effects of temperature on the infectivity of second-stage juveniles (J2) of these two species and determine differences in duration and thermal-time requirements (degree-days [DD]) to complete their developmental cycle. Florida isolates of M. enterolobii and M. floridensis were compared to M. incognita race 3. Tomato cv. BHN 589 seedlings following inoculation were placed in growth chambers set at constant temperatures of 25°C, and 30°C, and alternating temperatures of 30°C to 25°C (day-night). Root infection by the three nematode species was higher at 30°C than at 25°C, and intermediate at 30°C to 25°C, with 33%, 15%, and 24% infection rates, respectively. There was no difference, however, in the percentages of J2 that infected roots among species at each temperature. Developmental time from infective J2 to reproductive stage for the three species was shorter at 30°C than at 25°C, and 30°C to 25°C. The shortest time and DD to egg production for the three species were 13 days after inoculation (DAI) and 285.7 DD, respectively. During the experimental timeframe of 29 d, a single generation was completed at 30°C for all three species, whereas only M. floridensis completed a generation at 30°C to 25°C. The number of days and accumulated DD for completing the life cycle (from J2 to J2) were 23 d and 506.9 DD for M. enterolobii, and 25 d and 552.3 DD for M. floridensis and M. incognita, respectively. Exposure to lower (25°C) and intermediate temperatures (30°C to 25°C) decreased root penetration and slowed the developmental cycle of M. enterolobii and M. floridensis compared with 30°C.

3.
J Nematol ; 532021.
Artigo em Inglês | MEDLINE | ID: mdl-34396147

RESUMO

The peach root-knot nematode, Meloidogyne floridensis, is an emerging species and may become a threat to peach growers if contamination and spread are not avoided. The influence of temperature and two plants - tomato (Solanum lycopersicum) and French marigold (Tagete patula) - on the vertical migration of second-stage juveniles (J2) of M. floridensis was studied using 14-cm long segmented soil columns. Plants were transplanted into cups attached to the top of each column. Nylon meshes were placed between cups and columns to prevent downward root growth. About 1,000 freshly hatched J2 were injected into the base of the columns and then the columns were transferred to growth chambers at 20 and 26°C under a completely randomized block design with four replicates. The number of J2 in each ring of the columns as well as inside tomato or marigold roots was recorded at 3, 6, 9, and 12 days after injection (DAI). Nematode data were subjected to a repeated measures MANOVA. The presence of plants did not improve J2 migration as compared to control. M. floridensis migration was best at 20°C at first, with J2 migrating more than 13 cm as soon as 3 DAI, while it took 9 DAI for J2 to migrate long distances at 26°C. The distribution of J2 along the columns was similar at both temperatures at 12 DAI. Temperature had no influence on J2 penetration. French marigold did not hinder J2 migration, but fewer J2 penetrated its roots.

4.
J Nematol ; 532021.
Artigo em Inglês | MEDLINE | ID: mdl-35174334

RESUMO

Cultivar Flordaguard is suggested as a root-knot nematode (RKN) resistant rootstock for Florida peaches, however, RKN disease has been observed on this rootstock in peach orchards. Our goal was to confirm whether the RKN resistance breaking isolates of M. floridensis and M. arenaria indeed could infect and reproduce on the peach rootstock cv. Flordaguard in both laboratory and field studies. Root galling occurred on all peach cultivars evaluated including Flordaguard, Flordaglo, Okinawa, and Lovell, in the presence of the RKN resistance-breaking isolates of M. floridensis (MfGnv14) and two M. arenaria isolates (Ma1 and Ma2). These rootstocks showed varying degrees of susceptibility (to a lesser extent in Okinawa) to these three RKN resistance-breaking isolates. The importance of nematode inoculum concentrations in differentiating between resistance and susceptible plants was demonstrated, and thus are an important factor to consider in nematode resistance breeding programs. In host differential tests the peach-originated isolates of M. floridensis and M. arenaria behaved similarly with the vegetable-originated isolates of M. floridensis on tomato, peanut, watermelon, and tobacco, but showed variable host responses on cotton and pepper. The two M. arenaria isolates from peach reproduced on pepper but not on peanut. To our knowledge this is the first report of M. arenaria race 3 infecting Flordaguard and pepper in Florida. Soil and root samples collected from cv. Flordaguard infected trees at two commercial peach orchards showed that M. floridensis and M. arenaria were established on the rootstock.

5.
J Nematol ; 522020.
Artigo em Inglês | MEDLINE | ID: mdl-33829174

RESUMO

Yellow (Cyperus esculentus) and purple (C. rotundus) nutsedges, and coffee senna (Senna occidentalis) are common weeds in the southern USA and each have been reported as alternative hosts for plant-parasitic nematodes. Our objective was to determine the host suitability of these weeds to plant-parasitic nematodes common in Florida agriculture and turfgrass systems. The root-knot nematode (RKN) species tested included Meloidogyne arenaria, M. enterolobii, M. floridensis, M. graminis, M. hapla, M. incognita, and M. javanica. The host status of sting nematode, Belonolaimus longicaudatus, was also evaluated, but only on the nutsedge species. All RKN species evaluated reproduced on both nutsedge species and had a reproductive factor greater than one, except for M. graminis on yellow nutsedge. However, only M. hapla, M. javanica, and M. graminis induced visual galls on yellow nutsedge and only M. graminis caused galling on purple nutsedge. Meloidogyne arenaria and M. graminis reproduced at a greater rate on purple nutsedge than on yellow nutsedge. Both nutsedge species were good hosts to B. longicaudatus. Coffee senna was a host to M. enterolobii, a poor host to M. incognita, and nonhost to the other RKN species evaluated.

6.
J Nematol ; 49(2): 140-149, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28706313

RESUMO

The following work was initiated to determine the scope of application methodology and fumigant combinations for increasing efficacy of 1,3-dichloropropene (1,3-D) and metam sodium for management of root-knot nematodes (Meloidogyne spp.) in Florida. A series of five experiments were set up during spring and fall seasons to evaluate the potential of different fumigants, alone or in combination, in polyethylene film tomato production. The most promising chemical alternatives to methyl bromide, in terms of root-knot nematode management, were the combinations 1,3-D-chloropicrin, chloropicrin-proprietary solvent ,and 1,3-D-metam sodium. Sprayed or injected metam sodium generally provided only short-term nematode management and by harvest nematode infection was not different from the nontreated control. Drip-applied metam sodium gave good nematode management under high nematode pressure, but needs further verification to establish (i) the importance of soil moisture and temperature on treatment efficacy and (ii) whether similar management can be obtained with fewer than three drip tubes. Broadcast applications of 1,3-D showed better efficacy as compared to applications on a preformed raised bed. Fumigation did not increase tomato yields in spring when root-knot nematode pressure was low, but during fall all chemical treatments increased yields three to five-fold, as root-knot nematode was a major yield-limiting factor.

7.
PLoS One ; 11(5): e0154712, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27136916

RESUMO

Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes.


Assuntos
Rabditídios/efeitos dos fármacos , Salicilatos/farmacologia , Animais , Bioensaio , Cadeia Alimentar , Herbivoria/efeitos dos fármacos , Raízes de Plantas/metabolismo , Salicilatos/metabolismo , Compostos Orgânicos Voláteis/metabolismo
8.
J Nematol ; 47(4): 310-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26941459

RESUMO

Vegetable crops in the southeastern United States are commonly grown on plastic mulch with two crop cycles produced on a single mulch application. Field trials were conducted in 2013 and 2014 in two locations to evaluate the efficacy of fluensulfone for controlling Meloidogyne spp. when applied through drip irrigation to cucumber in a tomato-cucumber double-cropping system. In the spring tomato crop, 1,3-dichloropropene (1,3-D), fluensulfone, and a resistant cultivar significantly decreased root galling by 91%, 73%, and 97%, respectively, compared to the untreated control. Tomato plots from the spring were divided into split plots for the fall where the main plots were the spring treatment and the subplots were cucumber either treated with fluensulfone (3.0 kg a.i./ha. via drip irrigation) or left untreated. The fall application of fluensulfone improved cucumber vigor and reduced gall ratings compared to untreated subplots. Fluensulfone reduced damage from root-knot nematodes when applied to the first crop as well as provided additional protection to the second crop when it was applied through a drip system.

9.
Chemosphere ; 93(7): 1379-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23899923

RESUMO

Raised beds are used to produce some high-value annual fruit and vegetable crops such as strawberry in California (CA) and tomato in Florida (FL), USA. Pre-plant soil fumigation is an important tool to control soil-borne pests in the raised beds. However, fumigant emissions have detrimental environmental consequences. Field trials were conducted to evaluate emissions of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) in two different production systems with raised beds covered by different tarps. In the CA trial, InLine (60.8% 1,3-D and 33.3% CP) was drip-applied at 340 kg ha(-1) to 5 cm deep in the beds (30 cm high and 107 cm wide) tarped with polyethylene (PE) or virtually impermeable film (VIF). In the FL trial, carbonated Telone C35 (63.4% 1,3-D and 34.7% CP) was shank-applied at 151 kg ha(-1) to 20 cm deep in the beds (22 cm high and 76 cm wide) tarped with totally impermeable film (TIF). Emissions from tarped beds relative to furrows were contrary between the two trials. For the CA trial, the emission was 47% of applied 1,3-D and 27% of applied CP from PE tarped beds and 31% of applied 1,3-D and 15% of applied CP from VIF tarped beds, while that from uncovered furrows was<0.4% for both chemicals in both fields. In the FL trial, only 0.1% 1,3-D was emitted from the TIF tarped beds, but 27% was measured from the uncovered furrows. Factors contributing to the differences in emissions were chiefly raised-bed configuration, tarp permeability, fumigant application method, soil properties, soil water content, and fumigant carbonation. The results indicate that strategies for emission reduction must consider the differences in agronomic production systems. Modifying raised bed configuration and fumigant application technique in coarse textured soils with TIF tarping can maximize fumigation efficiency and emission reduction.


Assuntos
Poluentes Atmosféricos/análise , Fumigação/métodos , Praguicidas/análise , Agricultura/métodos , Solo/química
10.
J Environ Sci Health B ; 43(5): 376-81, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18576217

RESUMO

The purpose of this study was to conduct a field study at a Florida field site on surface emissions and subsurface distribution of cis-and trans-1,3-dichloropropene (1,3-D) and chloropicrin (CP) in raised beds injected with Telone C35 with four replications. A total of 16 beds were applied with Telone C35 by chisel injection and covered with four different plastic films, 4 beds for each film. Each bed was installed with five 20-cm long soil pore air probes and a surface air collection pan at arbitrarily locations along the length of each bed for sampling soil pore air and surface air, respectively, for analysis of the three biologically active compounds, cis- and trans-1,3-D and CP. We found that average concentrations of the three compounds at 20-cm depth among the beds covered with four different plastic films generally were not statistically different. Among the four beds covered with the same plastic film, average concentrations of the three compounds were statistically different only in the four metallic PE covered beds at 5 and 24 hours after injection. Volatilization rates of the three compounds among the beds covered with four different plastic films, with the exception of CP at 48 hours after injection, were not statistically different. It appeared that initial upward diffusion and volatilization flux were influenced by solar radiation. Initial subsurface concentrations of the three compounds and volatilization flux, especially cis-1,3-D, were greater in the beds on the east side of the field than that in the beds on the west side of the field. Whether or not difference in initial subsurface concentrations of the compounds between east side beds and west side beds may influence fumigant efficacy remains to be determined.


Assuntos
Poluentes Atmosféricos/análise , Compostos Alílicos/análise , Substâncias para a Guerra Química/análise , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Inseticidas/análise , Plásticos/química , Poluentes Atmosféricos/química , Difusão , Florida , Porosidade , Medição de Risco , Estereoisomerismo , Propriedades de Superfície , Fatores de Tempo , Volatilização
11.
Arch Environ Contam Toxicol ; 53(2): 141-50, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17549542

RESUMO

The concentration and distribution of a soil fumigant in the subsurface of field plots are two key factors in the determination of the fumigant efficacy. Subsurface concentrations of the biologically active compounds cis- and trans-1,3-dichloropropene (1,3-D) and chloropicrin (CP) were determined in soil at two adjacent injection traces and midpoint between the two traces in plastic-covered field beds after injection of the fumigant Telone C35 by conventional chisels or by a coulter rig (Avenger coulters). Two of the four beds were covered with metallic polyethylene film (MPE) and the remaining two were covered with virtually impermeable film (VIF). Three hours after chisel injection, concentrations of the three compounds at the two adjacent injection traces in the two beds were highly variable. Large concentrations of the compounds were detected at the side traces, whereas the compounds were not detected at the middle traces (bed centers) in the two chisel-injected beds covered with MPE or VIF. Initial concentrations of the three compounds at the two adjacent injection traces in the two Avenger-coulter-injected beds were more uniform than in the chisel-injected beds but still variable. Also, the three compounds had diffused horizontally to midpoint between the two injection traces in all four beds, generally in smaller concentrations. Concentrations of the three compounds in the shallow subsurface soil layer (0.5-30 cm) in the beds became progressively more uniform and then declined slowly. Volatilization losses from the two Avenger-coulter-injected beds and the chisel-injected bed covered with VIF were low. Combination of Avenger coulter injection and VIF provided better retention of the compounds in this soil layer and, thus, likely would provide better fumigant efficacy and crop yield.


Assuntos
Agricultura/métodos , Compostos Alílicos/análise , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Polietileno , Porosidade , Solo/análise , Volatilização
12.
J Environ Sci Health B ; 42(1): 15-20, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17162563

RESUMO

A field experiment was conducted to compare two plastic mulches and two application rates on surface emissions and subsurface distribution of methyl bromide (MBr) in field beds in Florida. Within 30 minutes after injection of MBr to 30 cm depth, MBr had diffused upward to soil surface in all beds covered with polyethylene film (PE) or virtually impermeable film (VIF) and applied at a high rate (392 kg/ha) and a low rate (196 kg/ha). Due to the highly permeable nature of PE, within 30 minutes after injection, MBr volatilized from the bed surfaces of the two PE-covered beds into the atmosphere. The amount of volatilization was greater for the high rate-treatment bed. On the other hand, volatilization of MBr from the bed surfaces of the two VIF-covered beds were negligible. Volatilization losses occurred from the edges of all the beds covered with PE or VIF and were greater from the high rate-treatment beds. Initial vertical diffusion of MBr in the subsurface of the beds covered with PE or VIF was mainly upward, as large concentrations of MBr were detected from near bed surfaces to 20 cm depth in these beds 30 minutes after injection and little or no MBr was found at 40 cm depth. The two VIF-covered beds exhibited greater MBr concentrations and longer resident times in the root zone (0.5-40 cm depth) than corresponding PE-covered beds. Concentrations of MBr in the root zone of the high rate-treatment beds were 3.6-6.1 times larger than the low rate-treatment beds during the first days after application. In conclusion, VIF promoted retention of MBr in the root zone and, if volatilization loss from bed edges can be blocked, volatilization loss from VIF-covered beds should be negligible.


Assuntos
Poluentes Atmosféricos/análise , Hidrocarbonetos Bromados/farmacologia , Noxas/farmacologia , Plásticos , Solo/análise , Agricultura/métodos , Relação Dose-Resposta a Droga , Monitoramento Ambiental , Hidrocarbonetos Bromados/análise , Hidrocarbonetos Bromados/química , Cinética , Noxas/análise , Noxas/química , Volatilização
13.
Arch Environ Contam Toxicol ; 51(2): 164-73, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16583255

RESUMO

This study was conducted to examine the effects of three application methods of metam sodium (broadcast, single irrigation drip tape delivery, and double irrigation drip tape delivery) and two plastic covers (polyethylene film and virtually impermeable film) on volatilization and on horizontal and vertical distributions of the biologically active product of metam sodium, methyl isothiocyanate (MITC), in field plots in a Florida sandy soil. Volatilization of MITC from field beds lasted for about 20 hours after completion of metam sodium application regardless of application methods. Virtually impermeable film (VIF) was a better barrier to reduce volatilization loss than polyethylene film (PE). Since water was not applied during broadcast application, MITC was mainly retained in the shallow soil layer (0- to 20-cm depth) and downward movement of MITC was limited to about 30 cm. Large values of standard deviation indicated that initial spatial distribution of MITC in the root zone (10- and 20-cm depths) of the two broadcast applied beds covered with PE or VIF was variable. Twice more water was delivered through the single drip tape than through individual tapes of double drip tape treatments during drip application of metam sodium. More water from the single drip tape likely facilitated downward movement of MITC to at least 60-cm depth, but MITC did not penetrate to this depth in the double drip tape beds. On the other hand, horizontal distribution of MITC in the root zone (10- and 20-cm depths) in the double drip tape beds was more uniform than in the single drip tape beds. More MITC was retained in the subsurface of the VIF-covered beds regardless of application methods than in the PE-covered beds.


Assuntos
Agricultura/métodos , Isotiocianatos/análise , Praguicidas/análise , Plásticos , Tiocarbamatos , Volatilização
14.
Chemosphere ; 62(6): 980-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16084566

RESUMO

Methyl bromide, a pre-emergent soil fumigant, is scheduled to be phased out in the US by 2005, with exceptions for critical use. Comparison of some of the physical constants related to distribution and retention for methyl bromide (MBr) to other fumigants yields a useful quantification of possible alternatives. In this study, the atmospheric and subsurface dissipation of methyl bromide as well as (Z)- and (E)-1,3-dichloropropene (1,3-D) isomers in Telone II were examined. The Henry's law constants of the three chemicals at soil temperature and their mass transfer coefficients for movement through an agricultural mulch of UV-resistant, high-density polyethylene (PE) were evaluated using field data. At the soil temperature of 16.4 degrees C, calculated Henry's law constant gave a fumigant ranking of MBr (0.21)>>(Z)-1,3-D (0.041)>(E)-1,3-D (0.027). Since rapid subsurface distribution of a fumigant is highly dependent on the amount in the gas phase, the greater value for Henry's law constant implies faster distribution throughout the soil. After distribution through the soil, retention of the fumigant becomes imperative. Calculation of the fumigant's mass transfer coefficients through PE from field data gave a ranking of the three chemicals: MBr (1.08 cm/h)<(E)-1,3-D (3.25 cm/h)<(Z)-1,3-D (4.13 cm/h). With mass transfer coefficients of this magnitude, it was concluded that PE film was an inadequate barrier for retaining these fumigants in an agricultural setting.


Assuntos
Compostos Alílicos/química , Hidrocarbonetos Bromados/química , Inseticidas/química , Polietileno , Agricultura/métodos , Florida , Hidrocarbonetos Clorados , Dióxido de Silício , Poluentes do Solo , Volatilização
15.
J Environ Sci Health B ; 39(5-6): 709-23, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15620080

RESUMO

The fumigant 1,3-dichloropropene (1,3-D) is considered to be a potential replacement for methyl bromide when methyl bromide is phased out in 2005. This study on surface emissions and subsurface diffusion of 1,3-D in a Florida sandy soil was conducted in field beds with or without plastic covers. After injection of the commercial fumigant Telone II by conventional chisels to field beds at 30cm depth which were covered with polyethylene film (PE), virtually impermeable film, or no cover (bare), (Z)- and (E)-1,3-D rapidly diffused upward. Twenty hours after injection, majority of (Z)- and (E)-1,3-D had moved upward from 30 cm depth to the layer of 5-20 cm depth. Downward movement of the two isomers in the beds with or without a plastic cover was not significant. (Z)-1,3-D diffused more rapidly than (E)-1,3-D. Virtually impermeable films (VIF) had a good capacity to retain (Z)- and (E)-1,3-D in soil pore air space. Vapor concentrations of the two isomers in the shallow subsurface of the field bed covered with VIF were greater than that in the two beds covered with polyethylene film (PE) or no cover (bare). In addition, VIF cover provided more uniform distribution of (Z)- and (E)-1,3-D in shallow subsurface than PE cover or no cover. Virtually impermeable film also had a better capability to retard surface emissions of the two isomers from soil in field beds than PE cover or no cover.


Assuntos
Poluentes Atmosféricos/análise , Compostos Alílicos/química , Inseticidas/química , Agricultura , Compostos Alílicos/análise , Monitoramento Ambiental , Hidrocarbonetos Clorados , Inseticidas/análise , Plásticos , Solo , Volatilização
16.
Pest Manag Sci ; 60(4): 390-8, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15119602

RESUMO

The main objective of this study was to determine the influence of soil moisture, organic matter amendment and plastic cover (a virtually impermeable film, VIF) on diffusion and emissions of (Z)- and (E)-1,3-dichloropropene (1,3-D) in microplots of Florida sandy soil (Arredondo fine sand). Upward diffusion of the two isomers in the Arredondo soil without a plastic cover was greatly influenced by soil-water content and (Z)-1,3-D diffused faster than (E)-1,3-D. In less than 5 h after 1,3-D injection to 30 cm depth, (Z)- and (E)-1,3-D in air dry soil had diffused to a 10 cm depth, whereas diffusion for the two isomers was negligible in near-water-saturated soil, even 101 h after injection. The diffusion rate of (Z)- and (E)-1,3-D in near-field-capacity soil was between the rates in the two water regimes. Yard waste compost (YWC) amendment greatly reduced diffusion of (Z)- and (E)-1,3-D, even in air-dry soil. Although upward diffusion of (Z)- and (E)-1,3-D in soil with VIF cover was slightly less than in the corresponding bare soil; the cover promoted retention of vapors of the two isomers in soil pore air in the shallow subsurface. More (Z)-1,3-D vapor was found initially in soil pore air than (E)-1,3-D although the difference declined thereafter. As a result of rapid upward movement in air-dry bare soil, (Z)- and (E)-1,3-D were rapidly volatilized into the atmosphere, but emissions from the near-water-saturated soil were minimal. Virtually impermeable film and YWC amendment retarded emissions. This study indicated that adequate soil water in this sandy soil is needed to prevent rapid emissions, but excess soil water slows diffusion of (Z)- and (E)-1,3-D. Thus, management for optimum water in soil is critical for pesticidal efficacy and the environment.


Assuntos
Compostos Alílicos/metabolismo , Poluição Ambiental/análise , Dióxido de Silício/análise , Solo/análise , Compostos Alílicos/administração & dosagem , Compostos Alílicos/química , Biodegradação Ambiental/efeitos dos fármacos , Difusão/efeitos dos fármacos , Florida , Hidrocarbonetos Clorados , Isomerismo , Plásticos , Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA