Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 27, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36635306

RESUMO

Interbasin water transfers (IBTs) can have a significant impact on the environment, water availability, and economies within the basins importing and exporting water, as well as basins downstream of these water transfers. The lack of comprehensive data identifying and describing IBTs inhibits understanding of the role IBTs play in supplying water for society, as well as their collective hydrologic impact. We develop three connected datasets inventorying IBTs in the United States and Canada, including their features, geospatial details, and water transfer volumes. We surveyed the academic and gray literature, as well as local, state, and federal water agencies, to collect, process, and verify IBTs in Canada and the United States. Our comprehensive IBT datasets represent all known transfers of untreated water that cross subregion (US) or subdrainage area (CA) boundaries, characterizing a total of 641 IBT projects. The infrastructure-level data made available by these data products can be used to close water budgets, connect water supplies to water use, and better represent human impacts within hydrologic and ecosystem models.

2.
Nat Commun ; 12(1): 7254, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903744

RESUMO

Drinking water supplies of cities are exposed to potential contamination arising from land use and other anthropogenic activities in local and distal source watersheds. Because water quality sampling surveys are often piecemeal, regionally inconsistent, and incomplete with respect to unregulated contaminants, the United States lacks a detailed comparison of potential source water contamination across all of its large cities. Here we combine national-scale geospatial datasets with hydrologic simulations to compute two metrics representing potential contamination of water supplies from point and nonpoint sources for over a hundred U.S. cities. We reveal enormous diversity in anthropogenic activities across watersheds with corresponding disparities in the potential contamination of drinking water supplies to cities. Approximately 5% of large cities rely on water that is composed primarily of runoff from non-pristine lands (e.g., agriculture, residential, industrial), while four-fifths of all large cities that withdraw surface water are exposed to treated wastewater in their supplies.


Assuntos
Água Potável/análise , Poluição da Água/análise , Abastecimento de Água , Efeitos Antropogênicos , Cidades , Água Potável/normas , Monitoramento Ambiental , Humanos , Hidrologia , Modelos Teóricos , Estados Unidos , Águas Residuárias/análise , Poluição da Água/prevenção & controle , Purificação da Água , Qualidade da Água , Abastecimento de Água/métodos , Abastecimento de Água/normas
3.
Environ Sci Technol ; 53(24): 14113-14122, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31725269

RESUMO

Examination of water supply risk is important to identify areas of potential insecurity and prioritize allocation of resources. This work builds on and advances a previous U.S. water supply risk analysis developed at county-scale resolution, which did not account for water flow between counties and identified some counties on major rivers as being at high risk. This limitation is addressed in the present study. The analysis utilized data from U.S. Geological Survey water use reports to assess current water supply risk and also projected water supply risk in 2050. Flow volumes were calculated using the Water Supply Sustainability Index (WaSSI) tool developed by the USDA Forest Service, enabling the analysis to account for changes in climate and hydrology and changes in water demand. A modified Water Risk Index (WRI) was formulated, including five factors to which scaled values were assigned. Results indicate that accounting for natural transfers of water in counties in addition to local precipitation reduced the risk profile of many counties, with a maximum of 36 classified as high or very high risk, compared to over 400 identified in the highest risk category in the previous analysis.


Assuntos
Mudança Climática , Abastecimento de Água , Previsões , Hidrologia , Rios , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA