Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Comput Sci ; 4(5): 367-378, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38730184

RESUMO

Large language models have greatly enhanced our ability to understand biology and chemistry, yet robust methods for structure-based drug discovery, quantum chemistry and structural biology are still sparse. Precise biomolecule-ligand interaction datasets are urgently needed for large language models. To address this, we present MISATO, a dataset that combines quantum mechanical properties of small molecules and associated molecular dynamics simulations of ~20,000 experimental protein-ligand complexes with extensive validation of experimental data. Starting from the existing experimental structures, semi-empirical quantum mechanics was used to systematically refine these structures. A large collection of molecular dynamics traces of protein-ligand complexes in explicit water is included, accumulating over 170 µs. We give examples of machine learning (ML) baseline models proving an improvement of accuracy by employing our data. An easy entry point for ML experts is provided to enable the next generation of drug discovery artificial intelligence models.


Assuntos
Descoberta de Drogas , Aprendizado de Máquina , Simulação de Dinâmica Molecular , Proteínas , Ligantes , Descoberta de Drogas/métodos , Proteínas/química , Proteínas/metabolismo , Teoria Quântica
2.
Nat Commun ; 13(1): 7845, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543777

RESUMO

The assembly of biomolecules into condensates is a fundamental process underlying the organisation of the intracellular space and the regulation of many cellular functions. Mapping and characterising phase behaviour of biomolecules is essential to understand the mechanisms of condensate assembly, and to develop therapeutic strategies targeting biomolecular condensate systems. A central concept for characterising phase-separating systems is the phase diagram. Phase diagrams are typically built from numerous individual measurements sampling different parts of the parameter space. However, even when performed in microwell plate format, this process is slow, low throughput and requires significant sample consumption. To address this challenge, we present here a combinatorial droplet microfluidic platform, termed PhaseScan, for rapid and high-resolution acquisition of multidimensional biomolecular phase diagrams. Using this platform, we characterise the phase behaviour of a wide range of systems under a variety of conditions and demonstrate that this approach allows the quantitative characterisation of the effect of small molecules on biomolecular phase transitions.


Assuntos
Condensados Biomoleculares , Microfluídica , Espaço Intracelular , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA