Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Viruses ; 16(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38675900

RESUMO

Hepatitis E virus (HEV) is the main cause of acute hepatitis in humans worldwide and is responsible for a large number of outbreaks especially in Africa. Human infections are mainly caused by genotypes 1 and 2 of the genus Paslahepevirus, which are exclusively associated with humans. In contrast, viruses of genotypes 3 and 4 are zoonotic and have their main reservoir in domestic and wild pigs, from which they can be transmitted to humans primarily through the consumption of meat products. Both genotypes 3 and 4 are widespread in Europe, Asia, and North America and lead to sporadic cases of hepatitis E. However, there is little information available on the prevalence of these genotypes and possible transmission routes from animal reservoirs to humans in African countries. We therefore analysed 1086 pig sera collected in 2016/2017 in four districts in Sierra Leone for antibodies against HEV using a newly designed in-house ELISA. In addition, the samples were also analysed for HEV RNA by quantitative real-time RT-PCR. The overall seroprevalence in Sierra Leone was low with only 44 positive sera and a prevalence of 4.0%. Two serum pools were RT-PCR-positive and recovered partial sequences clustered into the genotype 3 (HEV-3) of the order Paslahepevirus, species Paslahepevirus balayani. The results are the first evidence of HEV-3 infection in pigs from Sierra Leone and demonstrate a low circulation of the virus in these animals to date. Further studies should include an examination of humans, especially those with close contact with pigs and porcine products, as well as environmental sampling to evaluate public health effects within the framework of a One Health approach.


Assuntos
Genótipo , Vírus da Hepatite E , Hepatite E , Filogenia , Doenças dos Suínos , Animais , Hepatite E/epidemiologia , Hepatite E/veterinária , Hepatite E/virologia , Vírus da Hepatite E/genética , Vírus da Hepatite E/classificação , Vírus da Hepatite E/isolamento & purificação , Vírus da Hepatite E/imunologia , Estudos Soroepidemiológicos , Suínos , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , Serra Leoa/epidemiologia , Anticorpos Anti-Hepatite/sangue , RNA Viral/genética , Sus scrofa/virologia , Humanos
2.
Emerg Infect Dis ; 30(4): 681-690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526081

RESUMO

Although pigs are naturally susceptible to Reston virus and experimentally to Ebola virus (EBOV), their role in Orthoebolavirus ecology remains unknown. We tested 888 serum samples collected from pigs in Guinea during 2017-2019 (between the 2013-16 epidemic and its resurgence in 2021) by indirect ELISA against the EBOV nucleoprotein. We identified 2 hotspots of possible pig exposure by IgG titer levels: the northern coast had 48.7% of positive serum samples (37/76), and Forest Guinea, bordering Sierra Leone and Liberia, where the virus emerged and reemerged, had 50% of positive serum samples (98/196). The multitarget Luminex approach confirms ELISA results against Ebola nucleoprotein and highlights cross-reactivities to glycoprotein of EBOV, Reston virus, and Bundibugyo virus. Those results are consistent with previous observations of the circulation of Orthoebolavirus species in pig farming regions in Sierra Leone and Ghana, suggesting potential risk for Ebola virus disease in humans, especially in Forest Guinea.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Suínos , Animais , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/veterinária , Guiné/epidemiologia , Sus scrofa , Serra Leoa/epidemiologia , Nucleoproteínas/genética
3.
Viruses ; 15(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37896825

RESUMO

Henipaviruses are single-stranded RNA viruses that have been shown to be virulent in several species, including humans, pigs, horses, and rodents. Isolated nearly 30 years ago, these viruses have been shown to be of particular concern to public health, as at least two members (Nipah and Hendra viruses) are highly virulent, as well as zoonotic, and are thus classified as BSL4 pathogens. Although only 5 members of this genus have been isolated and characterized, metagenomics analysis using animal fluids and tissues has demonstrated the existence of other novel henipaviruses, suggesting a far greater degree of phylogenetic diversity than is currently known. Using a variety of molecular biology techniques, it has been shown that these viruses exhibit varying degrees of tropism on a species, organ/tissue, and cellular level. This review will attempt to provide a general overview of our current understanding of henipaviruses, with a particular emphasis on viral tropism.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Humanos , Animais , Cavalos , Suínos , Filogenia , Tropismo Viral , Tropismo
4.
Viruses ; 15(4)2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37112941

RESUMO

Respiratory tract epithelium infection plays a primary role in Nipah virus (NiV) pathogenesis and transmission. Knowledge about infection dynamics and host responses to NiV infection in respiratory tract epithelia is scarce. Studies in non-differentiated primary respiratory tract cells or cell lines indicate insufficient interferon (IFN) responses. However, studies are lacking in the determination of complex host response patterns in differentiated respiratory tract epithelia for the understanding of NiV replication and spread in swine. Here we characterized infection and spread of NiV in differentiated primary porcine bronchial epithelial cells (PBEC) cultivated at the air-liquid interface (ALI). After the initial infection of only a few apical cells, lateral spread for 12 days with epithelium disruption was observed without releasing substantial amounts of infectious virus from the apical or basal sides. Deep time course proteomics revealed pronounced upregulation of genes related to type I/II IFN, immunoproteasomal subunits, transporter associated with antigen processing (TAP)-mediated peptide transport, and major histocompatibility complex (MHC) I antigen presentation. Spliceosomal factors were downregulated. We propose a model in which NiV replication in PBEC is slowed by a potent and broad type I/II IFN host response with conversion from 26S proteasomes to immunoproteasomal antigen processing and improved MHC I presentation for adaptive immunity priming. NiV induced cytopathic effects could reflect the focal release of cell-associated NiV, which may contribute to efficient airborne viral spread between pigs.


Assuntos
Vírus Nipah , Animais , Suínos , Vírus Nipah/fisiologia , Proteoma/metabolismo , Células Epiteliais , Replicação Viral , Mucosa Respiratória , Células Cultivadas
5.
Virus Res ; 329: 199099, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948228

RESUMO

Nairobi sheep disease virus (NSDV) belongs to the Orthonairovirus genus in the Bunyavirales order and is genetically related to human-pathogenic Crimean-Congo hemorrhagic fever virus (CCHFV). NSDV is a zoonotic pathogen transmitted by ticks and primarily affects naïve small ruminants in which infection leads to severe and often fatal hemorrhagic gastroenteritis. Despite its veterinary importance and the striking similarities in the clinical picture between NSDV-infected ruminants and CCHFV patients, the molecular pathogenesis of NSDV and its interactions with the host cell are largely unknown. Here, we identify the membrane-bound proprotein convertase site-1 protease (S1P), also known as subtilisin/kexin-isozyme-1 (SKI-1), as a host factor affecting NSDV infectivity. Absence of S1P in SRD-12B cells, a clonal CHO-K1 cell variant with a genetic defect in the S1P gene (MBTPS1), results in significantly decreased NSDV infectivity while transient complementation of SKI-1/S1P rescues NSDV infection. SKI-1/S1P is dispensable for virus uptake but critically required for production of infectious virus progeny. Moreover, we provide evidence that SKI-1/S1P is involved in the posttranslational processing of the NSDV glycoprotein precursor. Our results demonstrate the role of SKI-1/S1P in the virus life cycle of NSDV and suggest that this protease is a common host factor for orthonairoviruses and may thus represent a promising broadly-effective, indirect antiviral target.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Vírus da Doença do Carneiro de Nairobi , Cricetinae , Animais , Ovinos , Humanos , Vírus da Doença do Carneiro de Nairobi/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Glicoproteínas/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Cricetulus
6.
Methods Mol Biol ; 2610: 17-29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36534278

RESUMO

Nipah virus (NiV) is an emerging, zoonotic paramyxovirus that is among the most pathogenic of viruses in humans. During the first reported outbreak of NiV in Malaysia and Singapore in the late 1990s, pigs served as an intermediate host, which enabled the transmission to humans. Although subsequent outbreaks in Asia only reported direct bat-to-human and human-to-human transmission, pigs are still considered a potential source for viral dissemination in the epidemiology of the disease. Thus, serological assays such as Enzyme-linked immunosorbent assay (ELISA) or virus neutralization test (VNT) represent powerful tools to characterize the serum antibody responses in NiV-infected pigs as well as to perform seroepidemiological surveillance studies on the potential circulation of NiV or NiV-related viruses among pig populations worldwide. This chapter describes both methods in detail. Furthermore, we discuss some of the major pitfalls and indicate how to avoid them.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Animais , Suínos , Humanos , Formação de Anticorpos , Infecções por Henipavirus/epidemiologia , Ásia , Surtos de Doenças
7.
Virol J ; 19(1): 136, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999637

RESUMO

BACKGROUND: N-linked glycans on viral glycoproteins have been shown to be important for protein expression, processing and intracellular transport. The fusion glycoprotein F of Cedar virus (CedV) contains six potential N-glycosylation sites. FINDINGS: To investigate their impact on cell surface transport, proteolytic cleavage and biological activity, we disrupted the consensus sequences by conservative mutations (Asn to Gln) and found that five of the six potential N-glycosylation sites are actually utilized. The individual removal of N-glycan g1 (N66), g2 (N79) and g3 (N98) in the CedV F2 subunit had no or only little effect on cell surface transport, proteolytic cleavage and fusion activity of CedV F. Interestingly, removal of N-linked glycan g6 (N463) in the F1 subunit resulted in reduced cell surface expression but slightly increased fusogenicity upon co-expression with the CedV receptor-binding protein G. Most prominent effects however were observed for the disruption of N-glycosylation motif g4 (N413), which significantly impaired the transport of CedV F to the cell surface, thereby also affecting proteolytic cleavage and fusion activity. CONCLUSIONS: Our findings indicate that the individual N-linked modifications, with the exception of glycan g4, are dispensable for processing of CedV F protein in transfection experiments. However, removal of g4 led to a phenotype that was strongly impaired concerning cell surface expression and proteolytic activation.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas Virais de Fusão , Membrana Celular/metabolismo , Glicosilação , Polissacarídeos/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
8.
Microorganisms ; 10(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35744614

RESUMO

Since the identification of Hendra virus (HeV) infections in horses in Australia in 1994, more than 80 outbreaks in horses have been reported, and four out of seven spillover infections in humans had a fatal outcome. With the availability of a subunit vaccine based on the HeV-Glycoprotein (HeV-G), there is a need to serologically Differentiate the Infected from the Vaccinated Animals (DIVA). We developed an indirect ELISA using HeV-G expressed in Leishmania tarentolae and HeV-Nucleoprotein (HeV-N) expressed in recombinant baculovirus-infected insect cells as antigens. During evaluation, we tested panels of sera from naïve, vaccinated and infected horses that either originated from a Hendra-virus free region, or had been pre-tested in validated diagnostic tests. Our data confirm the reliability of this approach, as HeV-N-specific antibodies were only detected in sera from infected horses, while HeV-G-specific antibodies were detected in infected and vaccinated horses with a high level of specificity and sensitivity. Given the excellent correlation of data obtained for German and Australian HeV-negative horses, we assume that this test can be applied for the testing of horse serum samples from a variety of geographical regions.

9.
Viruses ; 14(5)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35632791

RESUMO

Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes severe disease in humans and livestock. Due to its high pathogenicity in humans and the lack of available vaccines and therapeutics, NiV needs to be handled in biosafety level 4 (BSL-4) laboratories. Safe inactivation of samples containing NiV is thus necessary to allow further processing in lower containment areas. To date, there is only limited information available on NiV inactivation methods validated by BSL-4 facilities that can be used as a reference. Here, we compare some of the most common inactivation methods in order to evaluate their efficacy at inactivating NiV in infected cells, supernatants and organs. Thus, several physical and chemical inactivation methods, and combinations thereof, were assessed. Viral replication was monitored for 3 weeks and NiV presence was assessed by RT-qPCR, plaque assay and indirect immunofluorescence. A total of nineteen methods were shown to reduce NiV infectious particles in cells, supernatants and organs to undetectable levels. Therefore, we provide a list of methods for the safe and efficient inactivation of NiV.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Humanos , Vírus Nipah/fisiologia , Replicação Viral
10.
Transbound Emerg Dis ; 68(3): 1521-1530, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32915496

RESUMO

In 2008, an outbreak of Reston ebolavirus (RESTV) in pigs in the Philippines expanded our understanding of the host range of ebolaviruses. Subsequent experimental infections with the human-pathogenic species Zaire ebolavirus (EBOV) confirmed that pigs are susceptible to African species of ebolaviruses. Pig keeping has become an increasingly important livelihood strategy throughout parts of sub-Saharan Africa, driven by increasing demand for pork. The growth in pig keeping is particularly rapid in Uganda, which has the highest per capita pork consumption in East Africa and a history of sporadic human outbreaks of Ebola virus disease (EVD). Using a systematic sampling protocol, we collected sera from 658 pigs presented for slaughter in Uganda between December 2015 and October 2016. Forty-six pigs (7%) were seropositive based on ELISA tests at two different institutions. Seropositive pigs had antibodies that bound to Sudan NP (n = 27), Zaire NP (Kikwit; n = 8) or both NPs (n = 11). Sera from 4 of the ELISA-positive pigs reacted in Western blot (EBOV NP = 1; RESTV NP = 2; both NPs = 2), and one sample had full neutralizing antibody against Sudan ebolavirus (SUDV) in virus neutralization tests. Pigs sampled in June 2016 were significantly more likely to be seropositive than pigs sampled in October 2016 (p = .03). Seropositive pigs were sourced from all regions except Western region. These observed temporal and spatial variations are suggestive of multiple introductions of ebolaviruses into the pig population in Uganda. This is the first report of exposure of pigs in Uganda to ebolaviruses and the first to employ systematic abattoir sampling for ebolavirus surveillance during a non-outbreak period. Future studies will be necessary to further define the role pigs play (if any) in ebolavirus maintenance and transmission so that potential risks can be mitigated.


Assuntos
Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/veterinária , Doenças dos Suínos/epidemiologia , Matadouros , Animais , Feminino , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Masculino , Prevalência , Fatores de Risco , Estudos Soroepidemiológicos , Análise Espaço-Temporal , Sus scrofa , Suínos , Doenças dos Suínos/virologia , Uganda/epidemiologia
11.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33158901

RESUMO

Airborne disinfection of high-containment facilities before maintenance or between animal studies is crucial. Commercial spore carriers (CSC) coated with 106 spores of Geobacillus stearothermophilus are often used to assess the efficacy of disinfection. We used quantitative carrier testing (QCT) procedures to compare the sensitivity of CSC with that of surrogates for nonenveloped and enveloped viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mycobacteria, and spores, to an aerosolized mixture of peroxyacetic acid and hydrogen peroxide (aPAA-HP). We then used the QCT methodology to determine relevant process parameters to develop and validate effective disinfection protocols (≥4-log10 reduction) in various large and complex facilities. Our results demonstrate that aPAA-HP is a highly efficient procedure for airborne room disinfection. Relevant process parameters such as temperature and relative humidity can be wirelessly monitored. Furthermore, we found striking differences in inactivation efficacies against some of the tested microorganisms. Overall, we conclude that dry fogging a mixture of aPAA-HP is highly effective against a broad range of microorganisms as well as material compatible with relevant concentrations. Furthermore, CSC are artificial bioindicators with lower resistance and thus should not be used for validating airborne disinfection when microorganisms other than viruses have to be inactivated.IMPORTANCE Airborne disinfection is not only of crucial importance for the safe operation of laboratories and animal rooms where infectious agents are handled but also can be used in public health emergencies such as the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. We show that dry fogging an aerosolized mixture of peroxyacetic acid and hydrogen peroxide (aPAA-HP) is highly microbicidal, efficient, fast, robust, environmentally neutral, and a suitable airborne disinfection method. In addition, the low concentration of dispersed disinfectant, particularly for enveloped viral pathogens such as SARS-CoV-2, entails high material compatibility. For these reasons and due to the relative simplicity of the procedure, it is an ideal disinfection method for hospital wards, ambulances, public conveyances, and indoor community areas. Thus, we conclude that this method is an excellent choice for control of the current SARS-CoV-2 pandemic.


Assuntos
COVID-19/prevenção & controle , Desinfetantes/farmacologia , Desinfecção/métodos , Mycobacterium/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Esporos Bacterianos/efeitos dos fármacos , Aerossóis , Linhagem Celular , Descontaminação/métodos , Geobacillus stearothermophilus/efeitos dos fármacos , Peróxido de Hidrogênio , Tamanho da Partícula , Ácido Peracético , Vapor
12.
Cells ; 9(9)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911832

RESUMO

Endocytosis plays a particular role in the proteolytic activation of highly pathogenic henipaviruses Hendra (HeV) and Nipah virus (NiV) fusion (F) protein precursors. These proteins require endocytic uptake from the cell surface to be cleaved by cellular proteases within the endosomal compartment, followed by recycling to the plasma membrane for incorporation into budding virions or mediation of cell-cell fusion. This internalization largely depends on a tyrosine-based consensus motif for endocytosis present in the cytoplasmic tail of HeV and NiV F. Given the large number of tyrosine residues present in the F protein cytoplasmic domain of Cedar virus (CedV), a closely related but low pathogenic henipavirus, we aimed to investigate whether CedV F protein undergoes signal-mediated endocytosis from the cell surface controlled by tyrosine-based motifs present in its cytoplasmic tail and whether endocytosis is relevant for its biological activity. Therefore, tyrosine-based signals were mutated, and mutations were assessed for their effect on F cell surface expression, endocytosis, and biological activity. A membrane-proximal YXXΦ motif and a C-terminal di-tyrosine motif are of particular importance for cell surface expression and endocytosis rate. Furthermore, our data strongly indicate the pivotal role of endocytosis for the biological activity of the CedV F protein.


Assuntos
Endocitose/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Humanos , Camundongos , Transfecção
13.
Emerg Infect Dis ; 26(4): 760-763, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32186496

RESUMO

Ebola virus (EBOV) is a highly pathogenic zoonotic virus for which the reservoir host has not been identified. To study the role of dogs as potential hosts, we screened 300 serum samples from dogs in Sierra Leone and found EBOV neutralizing antibodies in 12, suggesting their susceptibility to natural infection.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Anticorpos Neutralizantes , Surtos de Doenças , Cães , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/veterinária , Serra Leoa/epidemiologia
14.
J Virol Methods ; 278: 113835, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035122

RESUMO

Laboratories working with foot-and-mouth disease virus (FMDV) must maintain a high level of biocontainment. However, if infectious virus is reliably inactivated during sample processing, molecular and serological testing can be performed at a lower level of containment. In this study, three commercial lysis buffers (AL, AVL, and MagMAX CORE) were tested in two laboratories for their ability to inactivate FMDV A/IRN/8/2015 in different sample matrices (cell culture supernatant, epithelial tissue suspension and milk). Residual infectivity after the addition of lysis buffer was evaluated by inoculating susceptible cell cultures. No cytopathic effect was observed for all three lysis buffers, indicating that the buffers are capable of reducing viral infectivity (estimated range 3.1 to >5.1 Log10). These results highlight the capacity of lysis buffers to decrease FMDV infectivity; however, additional validation experiments should be conducted, particularly if different sample matrices and/or lysis buffers are used.


Assuntos
Vírus da Febre Aftosa/efeitos dos fármacos , Guanidina/farmacologia , Inativação de Vírus/efeitos dos fármacos , Animais , Soluções Tampão , Linhagem Celular , Febre Aftosa/virologia , Guanidina/química , Indicadores e Reagentes/química , Indicadores e Reagentes/farmacologia , Desnaturação Proteica , Suínos
15.
Transbound Emerg Dis ; 67(2): 724-732, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31627257

RESUMO

The genus Ebolavirus comprises several virus species with zoonotic potential and varying pathogenicity for humans. Ebolaviruses are considered to circulate in wildlife with occasional spillover events into the human population which then often leads to severe disease outbreaks. Several studies indicate a significant role of bats as reservoir hosts in the ebolavirus ecology. However, pigs from the Philippines have been found to be naturally infected with Reston virus (RESTV), an ebolavirus that is thought to only cause asymptomatic infections in humans. The recent report of ebolavirus-specific antibodies in pigs from Sierra Leone further supports natural infection of pigs with ebolaviruses. However, susceptibility of pigs to highly pathogenic Ebola virus (EBOV) was only shown under experimental settings and evidence for natural infection of pigs with EBOV is currently lacking. Between October and December 2017, we collected 308 serum samples from pigs in Guinea, West Africa, and tested for the presence of ebolavirus-specific antibodies with different serological assays. Besides reactivity to EBOV nucleoproteins in ELISA and Western blot for 19 (6.2%) and 13 (4.2%) samples, respectively, four sera recognized Sudan virus (SUDV) NP in Western blot. Furthermore, four samples specifically detected EBOV or SUDV glycoprotein (GP) in an indirect immunofluorescence assay under native conditions. Virus neutralization assay based on EBOV (Mayinga isolate) revealed five weakly neutralizing sera. The finding of (cross-) reactive and weakly neutralizing antibodies suggests the exposure of pigs from Guinea to ebolaviruses or ebola-like viruses with their pathogenicity as well as their zoonotic potential remaining unknown. Future studies should investigate whether pigs can act as an amplifying host for ebolaviruses and whether there is a risk for spillover events.


Assuntos
Anticorpos Antivirais/sangue , Surtos de Doenças/veterinária , Reservatórios de Doenças/veterinária , Ebolavirus/imunologia , Doença pelo Vírus Ebola/veterinária , Imunoglobulina G/sangue , Doenças dos Suínos/epidemiologia , Animais , Anticorpos Neutralizantes/sangue , Reações Cruzadas , Ebolavirus/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/veterinária , Fazendas , Feminino , Guiné/epidemiologia , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Humanos , Masculino , Nucleoproteínas/imunologia , Sus scrofa , Suínos , Doenças dos Suínos/virologia
16.
Vet Microbiol ; 237: 108405, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31561922

RESUMO

Nipah virus (NiV), a BSL-4 pathogen, belongs to the genus Henipavirus within the family Paramyxoviridae. To date, no effective vaccine is available. Although most of the current vaccine studies aim to induce a neutralizing antibody response, it has become evident that a promising vaccine should target both, humoral and cell-mediated immune response. Virus-like particles (VLPs) have been shown to activate both arms of the adaptive immune response. In our study, VLPs composed of the NiV surface glycoproteins G and F and the matrix protein of the closely related Hendra virus (HeV M) induced both, a neutralizing antibody response and an antigen-specific CD8 T cell response with proliferation, IFN-γ expression and Th1 cytokine secretion in C57BL/6 mice. In contrast, in BALB/c mice only a neutralizing antibody response was observed. All three viral proteins included in the VLPs were shown to harbor CD8 T cell epitopes; however, the combination of all three proteins enhanced the magnitude of the CD8 T cell response. To conclude, VLPs represent a promising vaccine candidate, as they induce humoral as well as CD8 T cell-mediated immune responses.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/fisiologia , Proliferação de Células/fisiologia , Henipavirus/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Neutralizantes , Chlorocebus aethiops , Citocinas , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Plasmídeos , Baço/citologia , Células Th1 , Células Th2 , Células Vero , Proteínas Virais/genética
17.
Transbound Emerg Dis ; 66(2): 921-928, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30576076

RESUMO

Hendra virus (HeV) and Nipah virus (NiV), belonging to the genus Henipavirus, are among the most pathogenic of viruses in humans. Old World fruit bats (family Pteropodidae) are the natural reservoir hosts. Molecular and serological studies found evidence of henipavirus infection in fruit bats from several African countries. However, little is known about the potential for spillover into domestic animals in East Africa, particularly pigs, which served as amplifying hosts during the first outbreak of NiV in Malaysia and Singapore. We collected sera from 661 pigs presented for slaughter in Uganda between December 2015 and October 2016. Using HeV G and NiV G indirect ELISAs, 14 pigs (2%) were seroreactive in at least one ELISA. Seroprevalence increased to 5.4% in October 2016, when pigs were 9.5 times more likely to be seroreactive than pigs sampled in December 2015 (p = 0.04). Eight of the 14 ELISA-positive samples reacted with HeV N antigen in Western blot. None of the sera neutralized HeV or NiV in plaque reduction neutralization tests. Although we did not detect neutralizing antibodies, our results suggest that pigs in Uganda are exposed to henipaviruses or henipa-like viruses. Pigs in this study were sourced from many farms throughout Uganda, suggesting multiple (albeit rare) introductions of henipaviruses into the pig population. We postulate that given the widespread distribution of Old World fruit bats in Africa, spillover of henipaviruses from fruit bats to pigs in Uganda could result in exposure of pigs at multiple locations. A higher risk of a spillover event at the end of the dry season might be explained by higher densities of bats and contact with pigs at this time of the year, exacerbated by nutritional stress in bat populations and their reproductive cycle. Future studies should prioritize determining the risk of spillover of henipaviruses from pigs to people, so that potential risks can be mitigated.


Assuntos
Vírus Hendra/isolamento & purificação , Infecções por Henipavirus/veterinária , Vírus Nipah/isolamento & purificação , Doenças dos Suínos/epidemiologia , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/virologia , Masculino , Prevalência , Fatores de Risco , Estudos Soroepidemiológicos , Sus scrofa , Suínos , Doenças dos Suínos/virologia , Uganda/epidemiologia
18.
J Infect Dis ; 218(suppl_5): S305-S311, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29982580

RESUMO

Many human ebolavirus outbreaks have been linked to contact with wildlife including nonhuman primates and bats, which are assumed to serve as host species. However, it is largely unknown to what extent other animal species, particularly livestock, are involved in the transmission cycle or act as additional hosts for filoviruses. Pigs were identified as a susceptible host for Reston virus with subsequent transmission to humans reported in the Philippines. To date, there is no evidence of natural Ebola virus (EBOV) infection in pigs, although pigs were shown to be susceptible to EBOV infection under experimental settings. To investigate the potential role of pigs in the ecology of EBOV, we analyzed 400 porcine serum samples from Sierra Leone for the presence of ebolavirus-specific antibodies. Three samples reacted with ebolavirus nucleoproteins but had no neutralizing antibodies. Our results (1) suggest the circulation of ebolaviruses in swine in Sierra Leone that are antigenically related but not identical to EBOV and (2) could represent undiscovered ebolaviruses with unknown pathogenic and/or zoonotic potential.


Assuntos
Ebolavirus/genética , Doença pelo Vírus Ebola/virologia , Suínos/virologia , Animais , Animais Selvagens/sangue , Animais Selvagens/imunologia , Animais Selvagens/virologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Feminino , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/imunologia , Humanos , Masculino , Nucleoproteínas/imunologia , Filipinas , Soro/imunologia , Soro/virologia , Serra Leoa
19.
PLoS One ; 13(4): e0194385, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29708971

RESUMO

Hendra virus (HeV) and Nipah virus (NiV) belong to the genus Henipavirus in the family Paramyxoviridae. Henipavirus infections were first reported in the 1990's causing severe and often fatal outbreaks in domestic animals and humans in Southeast Asia and Australia. NiV infections were observed in humans in Bangladesh, India and in the first outbreak in Malaysia, where pigs were also infected. HeV infections occurred in horses in the North-Eastern regions of Australia, with singular transmission events to humans. Bats of the genus Pteropus have been identified as the reservoir hosts for henipaviruses. Molecular and serological indications for the presence of henipa-like viruses in African fruit bats, pigs and humans have been published recently. In our study, truncated forms of HeV and NiV attachment (G) proteins as well as the full-length NiV nucleocapsid (N) protein were expressed using different expression systems. Based on these recombinant proteins, Enzyme-linked Immunosorbent Assays (ELISA) were developed for the detection of HeV or NiV specific antibodies in porcine serum samples. We used the NiV N ELISA for initial serum screening considering the general reactivity against henipaviruses. The G protein based ELISAs enabled the differentiation between HeV and NiV infections, since as expected, the sera displayed higher reactivity with the respective homologous antigens. In the future, these assays will present valuable tools for serosurveillance of swine and possibly other livestock or wildlife species in affected areas. Such studies will help assessing the potential risk for human and animal health worldwide by elucidating the distribution of henipaviruses.


Assuntos
Anticorpos Antivirais/sangue , Vírus Hendra/metabolismo , Vírus Nipah/metabolismo , Proteínas do Nucleocapsídeo/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/patologia , Infecções por Henipavirus/veterinária , Leishmania/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Testes de Neutralização , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo
20.
J Gen Virol ; 98(6): 1245-1258, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28635590

RESUMO

In order to gain further insight into the early virus-host interactions associated with highly pathogenic avian influenza virus infections in chickens, genome-wide expression profiling of chicken lung and brain was carried out at 24 and 72 h post-inoculation (h p.i.). For this purpose two recombinant H5N3 viruses were utilized, each possessing a polybasic HA0 cleavage site but differing in pathogenicity. The original rH5N3 P0 virus, which has a low-pathogenic phenotype, was passaged six times through chickens to give rise to the derivative rH5N3 P6 virus, which is highly pathogenic (Diederich S, Berhane Y, Embury-Hyatt C, Hisanaga T, Handel K et al.J Virol 2015;89:10724-10734). The gene-expression profiles in lung were similar for both viruses, although they varied in magnitude. While both viruses produced systemic infections, differences in clinical disease progression and viral tissue loads, particularly in brain, where loads of rH5N3 P6 were three orders of magnitude higher than rH5N3 P0 at 72 .p.i., were observed. Although genes associated with gene ontology (GO) categories INFα and INFß biosynthesis, regulation of innate immune response, response to exogenous dsRNA, defence response to virus, positive regulation of NF-κB import into the nucleus and positive regulation of immune response were up-regulated in rH5N3 P0 and rH5N3 P6 brains, fold changes were higher for rH5N3 P6. The additional up-regulation of genes associated with cytokine production, inflammasome and leukocyte activation, and cell-cell adhesion detected in rH5N3 P6 versus rH5N3 P0 brains, suggested that the balance between antiviral and pro-inflammatory innate immune responses leading to acute CNS inflammation might explain the observed differences in pathogenicity.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Influenza Aviária/imunologia , Influenza Aviária/patologia , Estruturas Animais/patologia , Estruturas Animais/virologia , Animais , Encéfalo/virologia , Galinhas , Perfilação da Expressão Gênica , Pulmão/patologia , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA