Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 9310, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39468068

RESUMO

Mass spectrometry-based methods can provide a global expression profile and structural readout of proteins in complex systems. Preserving the in vivo conformation of proteins in their innate state is challenging during proteomic experiments. Here, we introduce a whole animal in vivo protein footprinting method using perfusion of reagents to add dimethyl labels to exposed lysine residues on intact proteins which provides information about protein conformation. When this approach is used to measure dynamic structural changes during Alzheimer's disease (AD) progression in a mouse model, we detect 433 proteins that undergo structural changes attributed to AD, independent of aging, across 7 tissues. We identify structural changes of co-expressed proteins and link the communities of these proteins to their biological functions. Our findings show that structural alterations of proteins precede changes in expression, thereby demonstrating the value of in vivo protein conformation measurement. Our method represents a strategy for untangling mechanisms of proteostasis dysfunction caused by protein misfolding. In vivo whole-animal footprinting should have broad applicability for discovering conformational changes in systemic diseases and for the design of therapeutic interventions.


Assuntos
Doença de Alzheimer , Proteômica , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos , Proteômica/métodos , Modelos Animais de Doenças , Conformação Proteica , Humanos , Pegadas de Proteínas/métodos , Proteostase , Proteínas/metabolismo , Proteínas/química , Espectrometria de Massas/métodos , Dobramento de Proteína , Lisina/metabolismo , Lisina/química , Camundongos Transgênicos , Masculino
2.
J Proteome Res ; 23(11): 4878-4895, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39374426

RESUMO

Direct detection of biotinylated proteins (DiDBiT) is a proteomic method that can enrich and detect newly synthesized proteins (NSPs) labeled with bio-orthogonal amino acids with 20-fold improved detectability compared to conventional methods. However, DiDBiT has currently been used to compare only two conditions per experiment. Here, we present DiDBiT-TMT, a method that can be used to quantify NSPs across many conditions and replicates in the same experiment by combining isobaric tandem mass tagging (TMT) with DiDBiT. We applied DiDBiT-TMT to brain slices to determine changes in the de novo proteome that occur after inducing chemical long-term potentiation (cLTP) or treatment with the neuromodulator norepinephrine. We successfully demonstrated DiDBiT-TMT's capacity to quantitatively compare up to 9 samples in parallel. We showed that there is a minimal overlap among NSPs that are differentially expressed in cLTP-treated organotypic brain slices, norepinephrine-treated organotypic brain slices, and organotypic slices undergoing combinatorial treatment with norepinephrine and cLTP. Our results point to the possible divergence of the molecular mechanisms underlying these treatments and showcase the applicability of DiDBiT-TMT for studying neurobiology.


Assuntos
Biotinilação , Potenciação de Longa Duração , Plasticidade Neuronal , Norepinefrina , Proteômica , Espectrometria de Massas em Tandem , Animais , Proteômica/métodos , Norepinefrina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Espectrometria de Massas em Tandem/métodos , Proteoma/análise , Proteoma/metabolismo , Camundongos , Encéfalo/metabolismo , Ratos
3.
PLoS Pathog ; 20(9): e1012241, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39283948

RESUMO

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as volunteers challenged with ETEC, diarrheal severity is significantly increased in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery. EtpA is highly immunogenic resulting in robust antibody responses following natural infection and experimental challenge of volunteers with ETEC. To understand how EtpA directs ETEC-blood group A interactions and stimulates adaptive immunity, we mutated EtpA, mapped its glycosylation by mass-spectrometry (MS), isolated polyclonal (pAbs) and monoclonal antibodies (mAbs) from vaccinated mice and ETEC-infected volunteers, and determined structures of antibody-EtpA complexes by cryo-electron microscopy. Both bgA and mAbs that inhibited EtpA-bgA interactions and ETEC adhesion, bound to the C-terminal repeat domain highlighting this region as crucial for ETEC pathogen-host interaction. MS analysis uncovered extensive and heterogeneous N-linked glycosylation of EtpA and cryo-EM structures revealed that mAbs directly engage these unique glycan containing epitopes. Finally, electron microscopy-based polyclonal epitope mapping revealed antibodies targeting numerous distinct epitopes on N and C-terminal domains, suggesting that EtpA vaccination generates responses against neutralizing and decoy regions of the molecule. Collectively, we anticipate that these data will inform our general understanding of pathogen-host glycan interactions and adaptive immunity relevant to rational vaccine subunit design.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Polissacarídeos , Escherichia coli Enterotoxigênica/imunologia , Camundongos , Animais , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Humanos , Proteínas de Escherichia coli/imunologia , Glicosilação , Adesinas de Escherichia coli/imunologia , Adesinas de Escherichia coli/metabolismo , Anticorpos Antibacterianos/imunologia , Aderência Bacteriana/imunologia , Glicoproteínas de Membrana
4.
Front Immunol ; 15: 1426232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119336

RESUMO

The HIV-1 envelope glycoprotein (Env) is the sole neutralizing determinant on the surface of the virus. The Env gp120 and gp41 subunits mediate receptor binding and membrane fusion and are generated from the gp160 precursor by cellular furins. This cleavage event is required for viral entry. One approach to generate HIV-1 neutralizing antibodies following immunization is to express membrane-bound Env anchored on the cell-surface by genetic means using the natural HIV gp41 transmembrane (TM) spanning domain. To simplify the process of Env trimer membrane expression we sought to remove the need for Env precursor cleavage while maintaining native-like conformation following genetic expression. To accomplish these objectives, we selected our previously developed 'native flexibly linked' (NFL) stabilized soluble trimers that are both near-native in conformation and cleavage-independent. We genetically fused the NFL construct to the HIV TM domain by using a short linker or by restoring the native membrane external proximal region, absent in soluble trimers, to express the full HIV Env ectodomain on the plasma membrane. Both forms of cell-surface NFL trimers, without and with the MPER, displayed favorable antigenic profiles by flow cytometry when expressed from plasmid DNA or mRNA. These results were consistent with the presence of well-ordered cell surface native-like trimeric Env, a necessary requirement to generate neutralizing antibodies by vaccination. Inoculation of rabbits with mRNA lipid nanoparticles (LNP) expressing membrane-bound stabilized HIV Env NFL trimers generated tier 2 neutralizing antibody serum titers in immunized animals. Multiple inoculations of mRNA LNPs generated similar neutralizing antibody titers compared to immunizations of matched NFL soluble proteins in adjuvant. Given the recent success of mRNA vaccines to prevent severe COVID, these are important developments for genetic expression of native-like HIV Env trimers in animals and potentially in humans.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Anticorpos Anti-HIV , HIV-1 , Nanopartículas , RNA Mensageiro , Produtos do Gene env do Vírus da Imunodeficiência Humana , Animais , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Anticorpos Neutralizantes/imunologia , Humanos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Vacinas contra a AIDS/imunologia , Coelhos , RNA Mensageiro/imunologia , RNA Mensageiro/genética , Lipídeos/imunologia , Multimerização Proteica , Infecções por HIV/imunologia , Infecções por HIV/virologia , Infecções por HIV/prevenção & controle , Feminino , Lipossomos
5.
bioRxiv ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38979341

RESUMO

Fragile X syndrome (FXS) is a monogenic neurodevelopmental disorder with manifestations spanning molecular, neuroanatomical, and behavioral changes. Astrocytes contribute to FXS pathogenesis and show hundreds of dysregulated genes and proteins; targeting upstream pathways mediating astrocyte changes in FXS could therefore be a point of intervention. To address this, we focused on the bone morphogenetic protein (BMP) pathway, which is upregulated in FXS astrocytes. We generated a conditional KO (cKO) of Smad4 in astrocytes to suppress BMP signaling, and found this lessens audiogenic seizure severity in FXS mice. To ask how this occurs on a molecular level, we performed in vivo transcriptomic and proteomic profiling of cortical astrocytes, finding upregulation of metabolic pathways, and downregulation of secretory machinery and secreted proteins in FXS astrocytes, with these alterations no longer present when BMP signaling is suppressed. Functionally, astrocyte Smad4 cKO restores deficits in inhibitory synapses present in FXS auditory cortex. Thus, astrocytes contribute to FXS molecular and functional phenotypes, and targeting astrocytes can mitigate FXS symptoms.

7.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766097

RESUMO

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as human volunteers challenged with ETEC, diarrheal severity is significantly increased severity in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery. EtpA is highly immunogenic resulting in robust antibody responses following natural infection and experimental challenge of human volunteers with ETEC. To understand how EtpA directs ETEC-blood group A interactions and stimulates adaptive immunity, we mutated EtpA, mapped its glycosylation by mass-spectrometry (MS), isolated polyclonal (pAbs) and monoclonal antibodies (mAbs) from vaccinated mice and ETEC-infected human volunteers, and determined structures of antibody-EtpA complexes by cryo-electron microscopy. Both bgA and mAbs that inhibited EtpA-bgA interactions and ETEC adhesion, bound to the C-terminal repeat domain highlighting this region as crucial for ETEC pathogen-host interaction. MS analysis uncovered extensive and heterogeneous N-linked glycosylation of EtpA and cryo-EM structures revealed that mAbs directly engage these unique glycan containing epitopes. Finally, electron microscopy-based polyclonal epitope mapping revealed antibodies targeting numerous distinct epitopes on N and C-terminal domains, suggesting that EtpA vaccination generates responses against neutralizing and decoy regions of the molecule. Collectively, we anticipate that these data will inform our general understanding of pathogen-host glycan interactions and adaptive immunity relevant to rational vaccine subunit design.

8.
Science ; 384(6697): eadk0582, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38753770

RESUMO

Germline-targeting (GT) HIV vaccine strategies are predicated on deriving broadly neutralizing antibodies (bnAbs) through multiple boost immunogens. However, as the recruitment of memory B cells (MBCs) to germinal centers (GCs) is inefficient and may be derailed by serum antibody-induced epitope masking, driving further B cell receptor (BCR) modification in GC-experienced B cells after boosting poses a challenge. Using humanized immunoglobulin knockin mice, we found that GT protein trimer immunogen N332-GT5 could prime inferred-germline precursors to the V3-glycan-targeted bnAb BG18 and that B cells primed by N332-GT5 were effectively boosted by either of two novel protein immunogens designed to have minimum cross-reactivity with the off-target V1-binding responses. The delivery of the prime and boost immunogens as messenger RNA lipid nanoparticles (mRNA-LNPs) generated long-lasting GCs, somatic hypermutation, and affinity maturation and may be an effective tool in HIV vaccine development.


Assuntos
Vacinas contra a AIDS , Anticorpos Amplamente Neutralizantes , Centro Germinativo , Anticorpos Anti-HIV , HIV-1 , Imunização Secundária , Nanopartículas , Vacinas de mRNA , Animais , Humanos , Camundongos , Vacinas contra a AIDS/imunologia , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Reações Cruzadas , Técnicas de Introdução de Genes , Centro Germinativo/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , HIV-1/genética , Lipossomos , Células B de Memória/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/genética , Hipermutação Somática de Imunoglobulina , Vacinas de mRNA/imunologia , Feminino , Camundongos Endogâmicos C57BL
9.
Nat Immunol ; 25(6): 1073-1082, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816615

RESUMO

A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Proteína gp41 do Envelope de HIV , Infecções por HIV , HIV-1 , Macaca mulatta , Animais , Humanos , Proteína gp41 do Envelope de HIV/imunologia , Anticorpos Anti-HIV/imunologia , Camundongos , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , HIV-1/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Vacinação , Anticorpos Amplamente Neutralizantes/imunologia , Linfócitos B/imunologia , Nanopartículas/química , Feminino , Regiões Determinantes de Complementaridade/imunologia , Epitopos/imunologia
10.
Adv Sci (Weinh) ; 11(29): e2400545, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38773714

RESUMO

Standard single-cell (sc) proteomics of disease states inferred from multicellular organs or organoids cannot currently be related to single-cell physiology. Here, a scPatch-Clamp/Proteomics platform is developed on single neurons generated from hiPSCs bearing an Alzheimer's disease (AD) genetic mutation and compares them to isogenic wild-type controls. This approach provides both current and voltage electrophysiological data plus detailed proteomics information on single-cells. With this new method, the authors are able to observe hyperelectrical activity in the AD hiPSC-neurons, similar to that observed in the human AD brain, and correlate it to ≈1400 proteins detected at the single neuron level. Using linear regression and mediation analyses to explore the relationship between the abundance of individual proteins and the neuron's mutational and electrophysiological status, this approach yields new information on therapeutic targets in excitatory neurons not attainable by traditional methods. This combined patch-proteomics technique creates a new proteogenetic-therapeutic strategy to correlate genotypic alterations to physiology with protein expression in single-cells.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Neurônios , Técnicas de Patch-Clamp , Proteômica , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteômica/métodos , Neurônios/metabolismo , Técnicas de Patch-Clamp/métodos , Análise de Célula Única/métodos
11.
Sci Transl Med ; 16(748): eadn0223, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38753806

RESUMO

A protective HIV vaccine will likely need to induce broadly neutralizing antibodies (bnAbs). Vaccination with the germline-targeting immunogen eOD-GT8 60mer adjuvanted with AS01B was found to induce VRC01-class bnAb precursors in 97% of vaccine recipients in the IAVI G001 phase 1 clinical trial; however, heterologous boost immunizations with antigens more similar to the native glycoprotein will be required to induce bnAbs. Therefore, we designed core-g28v2 60mer, a nanoparticle immunogen to be used as a first boost after eOD-GT8 60mer priming. We found, using a humanized mouse model approximating human conditions of VRC01-class precursor B cell diversity, affinity, and frequency, that both protein- and mRNA-based heterologous prime-boost regimens induced VRC01-class antibodies that gained key mutations and bound to near-native HIV envelope trimers lacking the N276 glycan. We further showed that VRC01-class antibodies induced by mRNA-based regimens could neutralize pseudoviruses lacking the N276 glycan. These results demonstrated that heterologous boosting can drive maturation toward VRC01-class bnAb development and supported the initiation of the IAVI G002 phase 1 trial testing mRNA-encoded nanoparticle prime-boost regimens.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Animais , Humanos , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Camundongos , Vacinação , Imunização Secundária , HIV-1/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Anticorpos Amplamente Neutralizantes/imunologia
12.
Science ; 384(6697): eadj8321, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38753769

RESUMO

Germline-targeting immunogens hold promise for initiating the induction of broadly neutralizing antibodies (bnAbs) to HIV and other pathogens. However, antibody-antigen recognition is typically dominated by heavy chain complementarity determining region 3 (HCDR3) interactions, and vaccine priming of HCDR3-dominant bnAbs by germline-targeting immunogens has not been demonstrated in humans or outbred animals. In this work, immunization with N332-GT5, an HIV envelope trimer designed to target precursors of the HCDR3-dominant bnAb BG18, primed bnAb-precursor B cells in eight of eight rhesus macaques to substantial frequencies and with diverse lineages in germinal center and memory B cells. We confirmed bnAb-mimicking, HCDR3-dominant, trimer-binding interactions with cryo-electron microscopy. Our results demonstrate proof of principle for HCDR3-dominant bnAb-precursor priming in outbred animals and suggest that N332-GT5 holds promise for the induction of similar responses in humans.


Assuntos
Vacinas contra a AIDS , Anticorpos Amplamente Neutralizantes , Regiões Determinantes de Complementaridade , Centro Germinativo , Anticorpos Anti-HIV , Animais , Humanos , Vacinas contra a AIDS/imunologia , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Regiões Determinantes de Complementaridade/imunologia , Microscopia Crioeletrônica , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Centro Germinativo/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Macaca mulatta , Células B de Memória/imunologia
13.
J Mol Biol ; 436(10): 168559, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580077

RESUMO

Upstream open reading frames (uORFs) are cis-acting elements that can dynamically regulate the translation of downstream ORFs by suppressing downstream translation under basal conditions and, in some cases, increasing downstream translation under stress conditions. Computational and empirical methods have identified uORFs in the 5'-UTRs of approximately half of all mouse and human transcripts, making uORFs one of the largest regulatory elements known. Because the prevailing dogma was that eukaryotic mRNAs produce a single functional protein, the peptides and small proteins, or microproteins, encoded by uORFs were rarely studied. We hypothesized that a uORF in the SLC35A4 mRNA is producing a functional microprotein (SLC35A4-MP) because of its conserved amino acid sequence. Through a series of biochemical and cellular experiments, we find that the 103-amino acid SLC35A4-MP is a single-pass transmembrane inner mitochondrial membrane (IMM) microprotein. The IMM contains the protein machinery crucial for cellular respiration and ATP generation, and loss of function studies with SLC35A4-MP significantly diminish maximal cellular respiration, indicating a vital role for this microprotein in cellular metabolism. The findings add SLC35A4-MP to the growing list of functional microproteins and, more generally, indicate that uORFs that encode conserved microproteins are an untapped reservoir of functional microproteins.


Assuntos
Membranas Mitocondriais , Proteínas Mitocondriais , Proteínas de Transporte de Nucleotídeos , Fases de Leitura Aberta , Humanos , Regiões 5' não Traduzidas/genética , Sequência de Aminoácidos , Mitocôndrias/metabolismo , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Fases de Leitura Aberta/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , Células HEK293
14.
Parasit Vectors ; 17(1): 36, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281054

RESUMO

BACKGROUND: When feeding on a vertebrate host, ticks secrete saliva, which is a complex mixture of proteins, lipids, and other molecules. Tick saliva assists the vector in modulating host hemostasis, immunity, and tissue repair mechanisms. While helping the vector to feed, its saliva modifies the site where pathogens are inoculated and often facilitates the infection process. The objective of this study is to uncover the variation in protein composition of Rhipicephalus microplus saliva during blood feeding. METHODS: Ticks were fed on calves, and adult females were collected, weighed, and divided in nine weight groups, representing the slow and rapid feeding phases of blood feeding. Tick saliva was collected, and mass spectrometry analyses were used to identify differentially secreted proteins. Bioinformatic tools were employed to predict the structural and functional features of the salivary proteins. Reciprocal best hit analyses were used to identify conserved families of salivary proteins secreted by other tick species. RESULTS: Changes in the protein secretion profiles of R. microplus adult female saliva during the blood feeding were observed, characterizing the phenomenon known as "sialome switching." This observation validates the idea that the switch in protein expression may serve as a mechanism for evading host responses against tick feeding. Cattle tick saliva is predominantly rich in heme-binding proteins, secreted conserved proteins, lipocalins, and protease inhibitors, many of which are conserved and present in the saliva of other tick species. Additionally, another remarkable observation was the identification of host-derived proteins as a component of tick saliva. CONCLUSIONS: Overall, this study brings new insights to understanding the dynamics of the proteomic profile of tick saliva, which is an important component of tick feeding biology. The results presented here, along with the disclosed sequences, contribute to our understanding of tick feeding biology and might aid in the identification of new targets for the development of novel anti-tick methods.


Assuntos
Rhipicephalus , Animais , Feminino , Bovinos , Rhipicephalus/fisiologia , Saliva/química , Proteômica , Proteínas de Artrópodes/metabolismo , Proteínas e Peptídeos Salivares/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(50): e2314429120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38055739

RESUMO

We detected ENU-induced alleles of Mfsd1 (encoding the major facilitator superfamily domain containing 1 protein) that caused lymphopenia, splenomegaly, progressive liver pathology, and extramedullary hematopoiesis (EMH). MFSD1 is a lysosomal membrane-bound solute carrier protein with no previously described function in immunity. By proteomic analysis, we identified association between MFSD1 and both GLMP (glycosylated lysosomal membrane protein) and GIMAP5 (GTPase of immunity-associated protein 5). Germline knockout alleles of Mfsd1, Glmp, and Gimap5 each caused lymphopenia, liver pathology, EMH, and lipid deposition in the bone marrow and liver. We found that the interactions of MFSD1 and GLMP with GIMAP5 are essential to maintain normal GIMAP5 expression, which in turn is critical to support lymphocyte development and liver homeostasis that suppresses EMH. These findings identify the protein complex MFSD1-GLMP-GIMAP5 operating in hematopoietic and extrahematopoietic tissues to regulate immunity and liver homeostasis.


Assuntos
Proteínas de Ligação ao GTP , Linfopenia , Humanos , Proteínas de Ligação ao GTP/metabolismo , Proteômica , Fígado/metabolismo , Linfócitos/metabolismo , Linfopenia/genética , Homeostase
16.
J Proteome Res ; 22(12): 3742-3753, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939376

RESUMO

The ß-coronavirus SARS-CoV-2 causes severe acute respiratory syndrome (COVID-19) in humans. It enters and infects epithelial airway cells upon binding of the receptor binding domain (RBD) of the virus entry protein spike to the host receptor protein Angiotensin Converting Enzyme 2 (ACE2). Here, we used coimmunoprecipitation coupled with bottom-up mass spectrometry to identify host proteins that engaged with the spike protein in human bronchial epithelial cells (16HBEo-). We found that the spike protein bound to extracellular laminin and thrombospondin and endoplasmatic reticulum (ER)-resident DJB11 and FBX2 proteins. The ER-resident proteins UGGT1, CALX, HSP7A, and GRP78/BiP bound preferentially to the original Wuhan D614 over the mutated G614 spike protein in the more rapidly spreading Alpha SARS-CoV-2 strain. The increase in protein binding to the D614 spike might be explained by higher accessibility of cryptic sites in "RDB open" and "S2 only" D614 spike protein conformations and may enable SARS-CoV-2 to infect additional, ACE2-negative cell types. Moreover, a novel proteome-based cell type set enrichment analysis (pCtSEA) found that host factors like laminin might render additional cell types such as macrophages and epithelial cells in the nephron permissive to SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Laminina , Ligação Proteica , Proteínas Virais/metabolismo , Tropismo
17.
JCI Insight ; 8(17)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37681413

RESUMO

Osteoarthritis (OA) is the most common joint disorder, and disease-modifying OA drugs (DMOADs) represent a major need in OA management. Krüppel-like factor 4 (KLF4) is a central transcription factor upregulating regenerative and protective functions in joint tissues. This study was aimed to identify small molecules activating KLF4 expression and to determine functions and mechanisms of the hit compounds. High-throughput screening (HTS) with 11,948 clinical-stage compounds was performed using a reporter cell line detecting endogenous KLF4 activation. Eighteen compounds were identified through the HTS and confirmed in a secondary screen. After testing in SW1353 chondrosarcoma cells and human chondrocytes, mocetinostat - a class I selective histone deacetylase (HDAC) inhibitor - had the best profile of biological activities. Mocetinostat upregulated cartilage signature genes in human chondrocytes, meniscal cells, and BM-derived mesenchymal stem cells, and it downregulated hypertrophic, inflammatory, and catabolic genes in those cells and synoviocytes. I.p. administration of mocetinostat into mice reduced severity of OA-associated changes and improved pain behaviors. Global gene expression and proteomics analyses revealed that regenerative and protective effects of mocetinostat were dependent on peroxisome proliferator-activated receptor γ coactivator 1-α. These findings show therapeutic and protective activities of mocetinostat against OA, qualifying it as a candidate to be used as a DMOAD.


Assuntos
Neoplasias Ósseas , Osteoartrite , Humanos , Animais , Camundongos , Fator 4 Semelhante a Kruppel , Osteoartrite/tratamento farmacológico , Inflamação , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico
18.
Nat Commun ; 14(1): 5195, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673892

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy in need of new therapeutic options. Using unbiased analyses of super-enhancers (SEs) as sentinels of core genes involved in cell-specific function, here we uncover a druggable SE-mediated RNA-binding protein (RBP) cascade that supports PDAC growth through enhanced mRNA translation. This cascade is driven by a SE associated with the RBP heterogeneous nuclear ribonucleoprotein F, which stabilizes protein arginine methyltransferase 1 (PRMT1) to, in turn, control the translational mediator ubiquitin-associated protein 2-like. All three of these genes and the regulatory SE are essential for PDAC growth and coordinately regulated by the Myc oncogene. In line with this, modulation of the RBP network by PRMT1 inhibition reveals a unique vulnerability in Myc-high PDAC patient organoids and markedly reduces tumor growth in male mice. Our study highlights a functional link between epigenetic regulation and mRNA translation and identifies components that comprise unexpected therapeutic targets for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Masculino , Animais , Camundongos , RNA , Epigênese Genética , Sequências Reguladoras de Ácido Nucleico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Metiltransferases , Proteínas de Ligação a RNA/genética
19.
J Am Soc Mass Spectrom ; 34(9): 2025-2033, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37527410

RESUMO

Differential precipitation of proteins (DiffPOP) is a simple technique for fractionating complex protein mixtures. Using stepwise addition of acidified methanol, ten distinct subsets of proteins can be selectively precipitated by centrifugation and identified by mass spectrometry-based proteomics. We have previously shown that the ability of a protein to resist precipitation can be altered by drug binding, which enabled us to identify a novel drug-target interaction. Here, we show that the addition of DiffPOP to a standard LC-MS proteomics workflow results in a three-dimensional separation of peptides that increases protein coverage and peptide identifications. Importantly, DiffPOP reveals solubility differences between proteoforms, potentially providing valuable insights that are typically lost in bottom-up proteomics.


Assuntos
Proteínas , Proteômica , Proteômica/métodos , Peptídeos , Cromatografia Líquida/métodos , Espectrometria de Massas
20.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37397995

RESUMO

Numerous studies have investigated changes in protein expression at the system level using proteomic mass spectrometry, but only recently have studies explored the structure of proteins at the proteome level. We developed covalent protein painting (CPP), a protein footprinting method that quantitatively labels exposed lysine, and have now extended the method to whole intact animals to measure surface accessibility as a surrogate of in vivo protein conformations. We investigated how protein structure and protein expression change as Alzheimer's disease (AD) progresses by conducting in vivo whole animal labeling of AD mice. This allowed us to analyze broadly protein accessibility in various organs over the course of AD. We observed that structural changes of proteins related to 'energy generation,' 'carbon metabolism,' and 'metal ion homeostasis' preceded expression changes in the brain. We found that proteins in certain pathways undergoing structural changes were significantly co-regulated in the brain, kidney, muscle, and spleen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA