Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Clin Exp Med ; 24(1): 103, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758248

RESUMO

COVID-19 vaccination has been shown to prevent and reduce the severity of COVID-19 disease. The aim of this study was to explore the cardioprotective effect of COVID-19 vaccination in hospitalized COVID-19 patients. In this retrospective, single-center cohort study, we included hospitalized COVID-19 patients with confirmed vaccination status from July 2021 to February 2022. We assessed outcomes such as acute cardiac events and cardiac biomarker levels through clinical and laboratory data. Our analysis covered 167 patients (69% male, mean age 58 years, 42% being fully vaccinated). After adjustment for confounders, vaccinated hospitalized COVID-19 patients displayed a reduced relative risk for acute cardiac events (RR: 0.33, 95% CI [0.07; 0.75]) and showed diminished troponin T levels (Cohen's d: - 0.52, 95% CI [- 1.01; - 0.14]), compared to their non-vaccinated peers. Type 2 diabetes (OR: 2.99, 95% CI [1.22; 7.35]) and existing cardiac diseases (OR: 4.31, 95% CI [1.83; 10.74]) were identified as significant risk factors for the emergence of acute cardiac events. Our findings suggest that COVID-19 vaccination may confer both direct and indirect cardioprotective effects in hospitalized COVID-19 patients.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hospitalização , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Idoso , Hospitalização/estatística & dados numéricos , SARS-CoV-2/imunologia , Vacinação , Cardiopatias/prevenção & controle , Fatores de Risco , Adulto , Troponina T/sangue
2.
Clin Exp Med ; 24(1): 21, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280024

RESUMO

This study aimed to analyze the effect of COVID-19 vaccination on the occurrence of ARDS in hospitalized COVID-19 patients. The study population of this retrospective, single-center cohort study consisted of hospitalized COVID-19 patients with known vaccination status and chest computed tomography imaging between July 2021 and February 2022. The impact of vaccination on ARDS in COVID-19 patients was assessed through logistic regression adjusting for demographic differences and confounding factors with statistical differences determined using confidence intervals and effect sizes. A total of 167 patients (69% male, average age 58 years, 95% CI [55; 60], 42% fully vaccinated) were included in the data analysis. Vaccinated COVID-19 patients had a reduced relative risk (RR) of developing ARDS (RR: 0.40, 95% CI [0.21; 0.62]). Consequently, non-vaccinated hospitalized patients had a 2.5-fold higher probability of developing ARDS. This risk reduction persisted after adjusting for several confounding variables (RR: 0.64, 95% CI [0.29; 0.94]) in multivariate analysis. The protective effect of COVID-19 vaccination increased with ARDS severity (RR: 0.61, 95% CI [0.37; 0.92]). Particularly, patients under 60 years old were at risk for ARDS onset and seemed to benefit from COVID-19 vaccination (RR: 0.51, 95% CI [0.20; 0.90]). COVID-19 vaccination showed to reduce the risk of ARDS occurrence in hospitalized COVID-19 patients, with a particularly strong effect in patients under 60 years old and those with more severe ARDS.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , COVID-19/prevenção & controle , Estudos de Coortes , Estudos Retrospectivos , Vacinas contra COVID-19 , Síndrome do Desconforto Respiratório/prevenção & controle , Síndrome do Desconforto Respiratório/epidemiologia , Vacinação
3.
Life (Basel) ; 13(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37511839

RESUMO

(1) Background: Inflammatory bowel diseases are complex and multifactorial disorders of unknown etiology. The extravasation of activated leukocytes is a critical step in the pathogenesis of these diseases. Leukocyte integrin Mac-1 (αMß2; CD11b/CD18) is crucial for the extravasation of myeloid cells, and a novel activation-specific anti-Mac-1 Designed Ankyrin Repeat protein (DARPin F7) is a promising therapeutic agent for inflammatory diseases. In its activated conformation, Mac-1 expresses the high-affinity binding site I-domain, which the DARPin F7 selectively targets. In our study, we aimed to explore the therapeutic potential of anti-Mac-1 DARPin F7 in murine dextrane sodium sulfate (DSS)-induced colitis. (2) Methods: C57BL/6J mice received 3% DSS drinking water for five days, followed by normal drinking water for one week. The mice were treated with DARPin F7 or a control substance daily via intraperitoneal injections. Disease activity index (DAI), colon length, myeloperoxidase (MPO) activity measurements, H&E staining, and qRT-PCR were conducted after euthanizing the mice on day 12. (3) Results: Treatment with DARPin F7 resulted in less pronounced colon shortening and significantly lower histological scores. The DARPin F7-treated animals experienced substantially less disease and myeloperoxidase (MPO) activity. Animals that received DARPin F7 treatment suffered less weight loss and recovered from the weight loss more efficiently. Treatment with DARPin F7 also led to significantly reduced mRNA expression of inflammatory cytokines. (4) Conclusion: Anti-Mac-1 treatment markedly reduced disease activity and inflammatory reaction accompanying DSS-induced colitis in mice.

4.
J Transl Med ; 21(1): 319, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173738

RESUMO

BACKGROUND: Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is applied in patients with refractory hemodynamic failure. Exposure of blood components to high shear stress and the large extracorporeal surfaces in the ECMO circuit trigger a complex inflammatory response syndrome and coagulopathy which are believed to worsen the already poor prognosis of these patients. Mass spectrometry-based proteomics allow a detailed characterization of the serum proteome as it provides the identity and concentration of large numbers of individual proteins at the same time. In this study, we aimed to characterize the serum proteome of patients receiving VA-ECMO. METHODS: Serum samples were collected on day 1 and day 3 after initiation of VA-ECMO. Samples underwent immunoaffinity based depletion for the 14 most abundant serum proteins, in-solution digestion and PreOmics clean-up. A spectral library was built with multiple measurements of a master-mix sample using variable mass windows. Individual samples were measured in data independent acquisition (DIA) mode. Raw files were analyzed by DIA-neural network. Unique proteins were log transformed and quantile normalized. Differential expression analysis was conducted with the LIMMA-R package. ROAST was applied to generate gene ontology enrichment analyses. RESULTS: Fourteen VA-ECMO patients and six healthy controls were recruited. Seven patients survived. Three hundred and fifty-one unique proteins were identified. One hundred and thirty-seven proteins were differentially expressed between VA-ECMO patients and controls. One hundred and forty-five proteins were differentially expressed on day 3 compared to day 1. Many of the differentially expressed proteins were involved in coagulation and the inflammatory response. The serum proteomes of survivors and non-survivors on day 3 differed from each other according to partial least-squares discriminant analysis (PLS-DA) and 48 proteins were differentially expressed. Many of these proteins have also been ascribed to processes in coagulation and inflammation (e.g., Factor IX, Protein-C, Kallikrein, SERPINA10, SEMA4B, Complement C3, Complement Factor D and MASP-1). CONCLUSION: The serum proteome of VA-ECMO patients displays major changes compared to controls and changes from day 1 until day 3. Many changes in the serum proteome are related to inflammation and coagulation. Survivors and non-survivors can be differentiated according to their serum proteomes using PLS-DA analysis on day 3. Our results build the basis for future studies using mass-spectrometry based serum proteomics as a tool to identify novel prognostic biomarkers. TRIAL REGISTRATION: DRKS00011106.


Assuntos
Oxigenação por Membrana Extracorpórea , Proteoma , Humanos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Oxigenação por Membrana Extracorpórea/métodos , Inflamação/etiologia , Sobreviventes , Mortalidade Hospitalar , Estudos Retrospectivos , Choque Cardiogênico/etiologia
5.
J Thromb Thrombolysis ; 55(1): 134-140, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36344849

RESUMO

Results from multiple electrode aggregometry (MEA) may vary according to pre-analytic factors. This study aimed to analyze the association of time from blood draw to MEA in patients undergoing percutaneous coronary intervention (PCI). In this observational single-center cohort study, platelet aggregation (aggregation units, U) was quantified by MEA (Multiplate Analyzer) after stimulation with adenosine diphosphate (ADP; final concentration [Fc] 6.4 µM), thrombin receptor activating peptide (TRAP; Fc 32 µM), or arachidonic acid (AA; Fc 0.5 mM) in patients treated with ASA and clopidogrel following PCI. High on-clopidogrel platelet reactivity (HPR) was defined as ADP-induced platelet aggregation ≥ 46 U. The manufacturer recommends performing the analysis within 30-180 min after blood draw. Patients were grouped according to the time from blood draw to MEA: 30-180 min, < 30 min, or > 180 min. Platelet function of 273 patients with coronary artery disease undergoing PCI with dual antiplatelet therapy was analyzed. The median age was 72 years (interquartile range, IQR 62-79) and 179 (66%) were male. Median ADP-, TRAP-, and AA-induced aggregation was 25 (IQR 18-36) U, 79 (IQR 63-96) U, and 12 (IQR 7-18) U, respectively. For those analyzed within 30-180 min from blood draw, no significant correlation of time from blood draw to MEA was observed 1) ADP (r = - 0.04, p = 0.51); 2) TRAP (r = - 0.06, p = 0.32); 3) AA (r = - 0.03, p = 0.67). In patients undergoing percutaneous coronary intervention and treated with dual antiplatelet therapy, the time from blood draw to multiple electrode aggregometry does not correlate with ADP- induced aggregation when the measurement occurred within the recommended time interval of 30-180 min after blood draw.


Assuntos
Intervenção Coronária Percutânea , Inibidores da Agregação Plaquetária , Humanos , Masculino , Idoso , Feminino , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Clopidogrel/farmacologia , Ticlopidina , Estudos de Coortes , Plaquetas , Agregação Plaquetária , Testes de Função Plaquetária/métodos , Difosfato de Adenosina/farmacologia , Eletrodos
6.
Sci Rep ; 12(1): 6296, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428807

RESUMO

The acute respiratory distress syndrome (ARDS) is a life-threatening clinical condition. The number of ARDS cases has risen dramatically recently but specific treatment options are limited. ARDS is associated with an overshooting inflammatory response and neutrophils play a central role in its pathogenesis. Neutrophils express the integrin Mac-1 on their surface which adopts a resting and activated conformation depending on leukocyte activation. The aim of this study was to investigate the anti-inflammatory effects of the unique activation-specific anti-Mac-1 DARPin 'F7' in a mouse model of ARDS. ARDS was induced by intratracheal lipopolysaccharide (LPS) instillation and the acute (day 1-4) and chronic phase (day 5-10) were studied. After expression and purification, F7, a control DARPin and PBS, were applied daily via the intraperitoneal route. Survival and weight loss were recorded. Histological analysis of lung sections, flow cytometric leukocyte analysis of blood and bronchioalveolar lavage (BALF) were performed. Moreover, protein concentration and cytokine levels were determined in the BALF. Treatment with F7 improved survival and reduced weight loss significantly compared to treatment with the control DARPin or PBS. Neutrophil count in the BALF and peripheral blood were significantly reduced in mice treated with F7. Histology revealed significantly reduced pulmonary inflammation in the F7 treated group. Treatment with DARPin F7 inhibited neutrophil accumulation, reduced signs of local and systemic inflammation and improved survival in a mouse model of ARDS. F7 may be a novel anti-inflammatory drug candidate for the treatment of severe ARDS.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/metabolismo , Animais , Repetição de Anquirina , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Lipopolissacarídeos/metabolismo , Pulmão/patologia , Antígeno de Macrófago 1/metabolismo , Camundongos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Redução de Peso
7.
J Thromb Thrombolysis ; 53(3): 712-721, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34529213

RESUMO

Extracorporeal membrane oxygenation (ECMO) is used for patients with cardiopulmonary failure and is associated with severe bleeding and poor outcome. Platelet dysfunction may be a contributing factor. The aim of this prospective observational study was to characterize platelet dysfunction and its relation to outcome in ECMO patients. Blood was sampled from thirty ECMO patients at three timepoints. Expression of CD62P, CD63, activated GPIIb/IIIa, GPVI, GPIbα and formation platelet-leukocyte aggregates (PLA) were analyzed at rest and in response to stimulation. Delta granule storage-pool deficiency and secretion defects were also investigated. Fifteen healthy volunteers and ten patients with coronary artery disease served as controls. Results were also compared between survivors and non-survivors. Compared to controls, expression of platelet surface markers, delta granule secretion and formation of PLA was reduced, particularly in response to stimulation. Baseline CD63 expression was higher and activated GPIIb/IIIa expression in response to stimulation was lower in non-survivors on day 1 of ECMO. Logistic regression analysis revealed that these markers were associated with mortality. In conclusion, platelets from ECMO patients are severely dysfunctional predisposing patients to bleeding complications and poor outcome. Platelet dysfunction on day 1 of ECMO detected by the platelet surface markers CD63 and activated GPIIb/IIIa is associated with mortality. CD63 and activated GPIIb/IIIa may therefore serve as novel prognostic biomarkers, but future studies are required to determine their true potential.


Assuntos
Oxigenação por Membrana Extracorpórea , Plaquetas/metabolismo , Oxigenação por Membrana Extracorpórea/efeitos adversos , Hemorragia/etiologia , Humanos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Poliésteres/metabolismo
8.
Front Cardiovasc Med ; 8: 747453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805303

RESUMO

Background: Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is being increasingly applied in patients with circulatory failure, but mortality remains high. An inflammatory response syndrome initiated by activation of blood components in the extracorporeal circuit may be an important contributing factor. Patients with ST-elevation myocardial infarction (STEMI) may also experience a systemic inflammatory response syndrome and are at risk of developing cardiogenic shock and cardiac arrest, both indications for VA-ECMO. Extracellular vesicles (EV) are released by activated cells as mediators of intercellular communication and may serve as prognostic biomarkers. Cardiomyocyte EV, released upon myocardial ischemia, hold strong potential for this purpose. The aim of this study was to assess the EV-profile in VA-ECMO and STEMI patients and the association with outcome. Methods: In this prospective observational study, blood was sampled on day 1 after VA-ECMO initiation or myocardial reperfusion (STEMI patients). EV were isolated by differential centrifugation. Leukocyte, platelet, endothelial, erythrocyte and cardiomyocyte (caveolin-3+) Annexin V+ EV were identified by flow cytometry. EV were assessed in survivors vs. non-survivors of VA-ECMO and in STEMI patients with normal-lightly vs. moderately-severely reduced left ventricular function. Logistic regression was conducted to determine the predictive accuracy of EV. Pearson correlation analysis of EV with clinical parameters was performed. Results: Eighteen VA-ECMO and 19 STEMI patients were recruited. Total Annexin V+, cardiomyocyte and erythrocyte EV concentrations were lower (p ≤ 0.005) while the percentage of platelet EV was increased in VA-ECMO compared to STEMI patients (p = 0.002). Total Annexin V+ EV were increased in non-survivors of VA-ECMO (p = 0.01), and higher levels were predictive of mortality (AUC = 0.79, p = 0.05). Cardiomyocyte EV were increased in STEMI patients with moderately-severely reduced left ventricular function (p = 0.03), correlated with CK-MBmax (r = 0.57, p = 0.02) and time from reperfusion to blood sampling (r = 0.58, p = 0.01). Leukocyte EV correlated with the number of coronary stents placed (r = 0.60, p = 0.02). Conclusions: Elevated total Annexin V+ EV on day 1 of VA-ECMO are predictive of mortality. Increased cardiomyocyte EV on day 1 after STEMI correlate with infarct size and are associated with poor outcome. These EV may aid in the early identification of patients at risk of poor outcome, helping to guide clinical management.

9.
BMC Cardiovasc Disord ; 21(1): 480, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620090

RESUMO

BACKGROUND: Timely acquisition of 12-lead Electrocardiogram (ECG) in the emergency department (ED) is crucial and recommended by current guidelines. OBJECTIVES: To evaluate the association of medical history of coronary artery disease (hCAD) on door-to-ECG time in the ED. METHODS: In this single center, retrospective cohort study, patients admitted to ED for cardiac evaluation were grouped according to hCAD and no hCAD. The primary outcome was door-to-ECG time. A multivariate analysis adjusted for the cofounders sex, age, type of referral and shift was performed to evaluate the association of hCAD with door-to-ECG time. RESULTS: 1101 patients were included in this analysis. 362 patients (33%) had hCAD. Patients with hCAD had shorter door-to-ECG time (20 min. [Inter Quartile Range [IQR] 13-30] vs. 22 min. [IQR 14-37]; p < 0.001) when compared to patients with no hCAD. In a multivariable regression analysis hCAD was significantly associated with a shorter door-to-ECG time (- 3 min [p = 0.007; 95% confidence Interval [CI] - 5.16 to - 0.84 min]). CONCLUSION: In this single center registry, hCAD was associated with shorter door-to-ECG time. In patients presenting in ED for cardiac evaluation, timely ECG diagnostic should be facilitated irrespective of hCAD.


Assuntos
Serviço Hospitalar de Cardiologia , Doença da Artéria Coronariana/diagnóstico , Eletrocardiografia , Serviço Hospitalar de Emergência , Avaliação de Sintomas , Plantão Médico , Idoso , Idoso de 80 Anos ou mais , Angiografia Coronária , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Sistema de Registros , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Fluxo de Trabalho
10.
FASEB J ; 35(11): e21956, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34605573

RESUMO

MicroRNAs are key regulators of the cardiac response to injury. MiR-100 has recently been suggested to be involved in different forms of heart failure, but functional studies are lacking. In the present study, we examined the impact of transgenic miR-100 overexpression on cardiac structure and function during physiological aging and pathological pressure-overload-induced heart failure in mice after transverse aortic constriction surgery. MiR-100 was moderately upregulated after induction of pressure overload in mice. While in our transgenic model the cardiomyocyte-specific overexpression of miR-100 did not result in an obvious cardiac phenotype in unchallenged mice, the transgenic mouse strain exhibited less left ventricular dilatation and a higher ejection fraction than wildtype animals, demonstrating an attenuation of maladaptive cardiac remodeling by miR-100. Cardiac transcriptome analysis identified a repression of several regulatory genes related to cardiac metabolism, lipid peroxidation, and production of reactive oxygen species (ROS) by miR-100 overexpression, possibly mediating the observed functional effects. While the modulation of ROS-production seemed to be indirectly affected by miR-100 via Alox5-and Nox4-downregulation, we demonstrated that miR-100 induced a direct repression of the scavenger protein CD36 in murine hearts resulting in a decreased uptake of long-chain fatty acids and an alteration of mitochondrial respiratory function with an enhanced glycolytic state. In summary, we identified miR-100 as a modulator of cardiac metabolism and ROS production without an apparent cardiac phenotype at baseline but a protective effect under conditions of pressure-overload-induced cardiac stress, providing new insight into the mechanisms of heart failure.


Assuntos
Antígenos CD36/metabolismo , Insuficiência Cardíaca/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , NADPH Oxidase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Animais , Antígenos CD36/genética , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Células HEK293 , Insuficiência Cardíaca/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , NADPH Oxidase 4/genética , Ratos , Volume Sistólico/genética , Transfecção , Remodelação Ventricular/genética
11.
Sci Rep ; 11(1): 17459, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465804

RESUMO

P2Y12 blockade improves patient outcomes after myocardial infarction. As well as antithrombotic effects, anti-inflammatory effects may contribute to this beneficial clinical outcome. Here we aimed to identify potential anti-inflammatory effects of P2Y12 receptor blockers on monocytes and macrophages. Using flow cytometry, migration assays, flow chambers and RNA microarrays, we investigated the effects of adenosine diphosphate (ADP) and P2Y12 receptor blockers on blood monocytes, THP-1 monocytes and THP-1 monocytes after differentiation to macrophages. P2Y12 -expressing platelets can form aggregates with monocytes in circulating blood. Mediated by platelets, ADP results in activation of the integrin receptor Mac-1 on blood monocytes, as detected by the conformation-specific single-chain antibody MAN-1. Via the same association with platelets, THP-1 monocyte adhesion to the endothelial intercellular adhesion molecule 1 (ICAM-1) is induced by ADP. P2Y12 receptor blockers prevent these ADP effects on monocytes. Interestingly, in contrast to THP-1 monocytes, THP-1 monocytes, after differentiation to macrophages, directly expressed the P2Y12 receptor and consequently ADP was found to be a potent chemoattractant. Again, P2Y12 receptor blockers antagonised this effect. Accordingly, stimulation of THP-1 macrophages with ADP caused a substantial change in gene expression pattern and upregulation of several genes associated with inflammation and atherogenesis. These data establish novel anti-inflammatory effects of P2Y12 receptor blockers on monocytes and macrophages, which are expected to contribute to cardiovascular risk reduction.


Assuntos
Síndrome Coronariana Aguda/patologia , Anti-Inflamatórios/farmacologia , Doença da Artéria Coronariana/patologia , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Síndrome Coronariana Aguda/sangue , Difosfato de Adenosina/metabolismo , Estudos de Casos e Controles , Doença da Artéria Coronariana/sangue , Humanos , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Monócitos/metabolismo , Fosforilação , Receptores Purinérgicos P2Y12 , Células THP-1
13.
Front Cardiovasc Med ; 8: 689218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350217

RESUMO

Background: Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is used for critically ill patients requiring hemodynamic support but has been shown to induce an inflammatory response syndrome potentially leading to severe complications and poor outcome. Monocytes are comprised of different subsets and play a central role in the innate immune system. The unique small binding proteins, Designed Ankyrin Repeat Protein "F7" and single chain variable fragment "MAN-1," specifically detect the activated conformation of the leukocyte integrin Mac-1 enabling the highly sensitive detection of monocyte activation status. The aim of this study was to characterize monocyte function and heterogeneity and their association with outcome in VA-ECMO patients. Methods: VA-ECMO patients were recruited from the ICUs of the University Hospital in Freiburg, Germany. Blood was sampled on day 0 and day 3 after VA-ECMO placement, after VA-ECMO explantation and from healthy controls. Monocyte subset distribution, baseline activation and stimulability were analyzed by flow cytometry using the unique small binding proteins F7 and MAN-1 and the conventional activation markers CD163, CD86, CD69, and CX3CR1. Furthermore, expression of monocyte activation markers in survivors and non-survivors on day 0 was compared. Simple logistic regression was conducted to determine the association of monocyte activation markers with mortality. Results: Twenty two patients on VA-ECMO and 15 healthy controls were recruited. Eleven patients survived until discharge from the ICU. Compared to controls, baseline monocyte activation was significantly increased, whereas stimulability was decreased. The percentage of classical monocytes increased after explantation, while the percentage of intermediate monocytes decreased. Total, classical, and intermediate monocyte counts were significantly elevated compared to controls. On day 0, baseline binding of F7 was significantly lower in non-survivors than survivors. The area under the ROC curve associated with mortality on day 0 was 0.802 (p = 0.02). Conclusions: Distribution of monocyte subsets changes during VA-ECMO and absolute classical and intermediate monocyte counts are significantly elevated compared to controls. Monocytes from VA-ECMO patients showed signs of dysfunction. Monocyte dysfunction, as determined by the unique tool F7, could be valuable for predicting mortality in patients receiving VA-ECMO and may be used as a novel biomarker guiding early clinical decision making in the future.

14.
Basic Res Cardiol ; 116(1): 17, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33721106

RESUMO

The monocyte ß2-integrin Mac-1 is crucial for leukocyte-endothelium interaction, rendering it an attractive therapeutic target for acute and chronic inflammation. Using phage display, a Designed-Ankyrin-Repeat-Protein (DARPin) was selected as a novel binding protein targeting and blocking the αM I-domain, an activation-specific epitope of Mac-1. This DARPin, named F7, specifically binds to activated Mac-1 on mouse and human monocytes as determined by flow cytometry. Homology modelling and docking studies defined distinct interaction sites which were verified by mutagenesis. Intravital microscopy showed reduced leukocyte-endothelium adhesion in mice treated with this DARPin. Using mouse models of sepsis, myocarditis and ischaemia/reperfusion injury, we demonstrate therapeutic anti-inflammatory effects. Finally, the activated Mac-1-specific DARPin is established as a tool to detect monocyte activation in patients receiving extra-corporeal membrane oxygenation, as well as suffering from sepsis and ST-elevation myocardial infarction. The activated Mac-1-specific DARPin F7 binds preferentially to activated monocytes, detects inflammation in critically ill patients, and inhibits monocyte and neutrophil function as an efficient new anti-inflammatory agent.


Assuntos
Anti-Inflamatórios/farmacologia , Proteínas de Repetição de Anquirina Projetadas/farmacologia , Antígeno de Macrófago 1/metabolismo , Monócitos/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Miocardite/tratamento farmacológico , Miocárdio/metabolismo , Sepse/tratamento farmacológico , Animais , Técnicas de Visualização da Superfície Celular , Células Cultivadas , Proteínas de Repetição de Anquirina Projetadas/genética , Modelos Animais de Doenças , Epitopos , Oxigenação por Membrana Extracorpórea , Humanos , Antígeno de Macrófago 1/genética , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Simulação de Acoplamento Molecular , Monócitos/imunologia , Monócitos/metabolismo , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocardite/imunologia , Miocardite/metabolismo , Miocardite/fisiopatologia , Miocárdio/imunologia , Miocárdio/patologia , Estudo de Prova de Conceito , Ligação Proteica , Infarto do Miocárdio com Supradesnível do Segmento ST/imunologia , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo , Sepse/imunologia , Sepse/metabolismo , Sepse/fisiopatologia , Função Ventricular Esquerda/efeitos dos fármacos
15.
Interact Cardiovasc Thorac Surg ; 31(6): 884-891, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33164057

RESUMO

OBJECTIVES: Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is used in critically ill patients requiring haemodynamic support. Microvesicles (MV) are released by activated blood cells acting as mediators of intercellular communication. We aimed to determine MV count and composition over time in patients with VA-ECMO and explore what drives MV formation. METHODS: VA-ECMO patients and healthy controls were recruited prospectively, and blood was taken at different time points (day 0, 1, 3 after ECMO placement and after explantation) for MV analysis. RESULTS: Annexin V positive MV were increased in patients (n = 14, mean age = 61.4 ± 9.0 years, 11 males, 3 females) compared to healthy controls (n = 6, Annexin V positive MV count per millilitre day 1 versus healthy controls: 2.3 × 106 vs 1.3 × 105, P < 0.001). Furthermore, patients had higher proportions of endothelial and leukocyte MV [leukocyte MV day 1 versus healthy controls (%): 32.8 vs 17.5, P = 0.001; endothelial MV day 1 versus healthy controls (%): 10.5 vs 5.5, P = 0.01]. Annexin V positive and leucocyte MV correlated with the flow rate (r = 0.46, P = 0.01). CONCLUSIONS: Patients on VA-ECMO have increased levels of circulating MV and a changed MV composition. Our data support the hypothesis that MV release may be driven by higher flow rate and cellular activation in the extracorporeal circuit leading to poor outcomes in these patients. CLINICAL TRIAL REGISTRATION NUMBER: German Clinical Trials Register-ID: DRKS00011106.


Assuntos
Anexina A5/sangue , Estado Terminal/terapia , Oxigenação por Membrana Extracorpórea/métodos , Nível de Saúde , Hemodinâmica/fisiologia , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
16.
Inflammation ; 43(6): 2379-2391, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32803667

RESUMO

Leukocyte recruitment is a fundamental step in the inflammatory response during ischemia/reperfusion injury (IRI). Rolling and adhesion of leukocytes to activated endothelium promote tissue inflammation after IRI and require presentation of adhesion molecules E-selectin and ICAM-1 on the endothelial surface. Bone morphogenetic protein (BMP) 4 is a prominent member of the BMP family expressed and secreted by endothelial cells. BMP4 derived from endothelial cells has important functions in vascular disease but its influence on the leukocyte adhesion cascade during inflammation is incompletely understood. In the present study, we challenged mice with an inducible endothelial-specific BMP4 deletion (referred to as EC-BMP4-/- mice) and their control littermates (EC-BMP4+/+) with thioglycollate i.p. and assessed extravasation of different leukocyte subsets during peritonitis. Peritoneal lavages were performed and peritoneal cells were counted. Total cell count in lavages of EC-BMP4-/- mice was markedly reduced compared with lavages of EC-BMP4+/+ mice. FACS analyses of thioglycollate-elicited peritoneal cells revealed that diverse leukocyte subsets were reduced in EC-BMP4-/- mice. Intravital microscopy of cremaster venules demonstrated that rolling and adhesion of leukocytes were significantly diminished in EC-BMP4-/- mice in comparison with control mice in response to TNFα. These observations indicate that endothelial BMP4 is essential for rolling, adhesion, and extravasation of leukocytes in vivo. To understand the underlying mechanisms, levels of endothelial adhesion molecules E-selectin and ICAM-1 were quantified in EC-BMP4-/- and EC-BMP4+/+ mice by quantitative PCR and Western blotting. Interestingly, ICAM-1 and E-selectin expressions were reduced in the hearts of EC-BMP4-/- mice. Next we confirmed pro-inflammatory properties of BMP4 in a gain of function experiments and found that administration of recombinant BMP4 in male C57BL/6 mice increased leukocyte rolling and adhesion in cremaster venules in vivo. To assess the regulation of BMP4 in inflammatory disease in humans, we collected plasma samples of patients from day 0 to day 7 after survived out-of-hospital cardiac arrest (OHCA, n = 42). Remarkably, plasma of OHCA patients contained significantly higher BMP4 protein levels compared with patients with coronary artery disease (CAD, n = 12) or healthy volunteers (n = 11). Subgroup analysis revealed that elevated plasma BMP4 levels after ROSC are associated with decreased survival and unfavorable neurological outcome. Collectively, endothelial BMP4 is a potent activator of inflammation in vivo that promotes rolling, adhesion, and extravasation of leukocyte subsets by induction of E-selectin and ICAM-1. Elevation of plasma BMP4 levels in the post-resuscitation period suggests that BMP4 contributes to pathophysiology and poor outcome of post-cardiac arrest syndrome.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Endotélio Vascular/metabolismo , Migração e Rolagem de Leucócitos , Parada Cardíaca Extra-Hospitalar/metabolismo , Adulto , Idoso , Animais , Adesão Celular , Separação Celular , Selectina E/metabolismo , Feminino , Citometria de Fluxo , Humanos , Inflamação , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Peritonite/metabolismo , Proteínas Recombinantes/metabolismo , Resultado do Tratamento , Doenças Vasculares/metabolismo
17.
J Thromb Thrombolysis ; 50(3): 533-542, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32537679

RESUMO

Myocardial infarction is a frequent complication of cardiovascular disease leading to high morbidity and mortality worldwide. Elevated C-reactive protein (CRP) levels after myocardial infarction are associated with heart failure and poor prognosis. Cardiomyocyte microvesicles (CMV) are released during hypoxic conditions and can act as mediators of intercellular communication. MicroRNA (miRNA) are short non-coding RNA which can alter cellular mRNA-translation. Microvesicles (MV) have been shown to contain distinct patterns of miRNA from their parent cells which can affect protein expression in target cells. We hypothesized that miRNA containing CMV mediate hepatic CRP expression after cardiomyocyte hypoxia. H9c2-cells were cultured and murine cardiomyocytes were isolated from whole murine hearts. H9c2- and murine cardiomyocytes were exposed to hypoxic conditions using a hypoxia chamber. Microvesicles were isolated by differential centrifugation and analysed by flow cytometry. Next-generation-sequencing was performed to determine the miRNA-expression profile in H9c2 CMV compared to their parent cells. Microvesicles were incubated with a co-culture model of the liver consisting of THP-1 macrophages and HepG2 cells. IL-6 and CRP expression in the co-culture was assessed by qPCR and ELISA. CMV contain a distinct pattern of miRNA compared to their parent cells including many inflammation-related miRNA. CMV induced IL-6 expression in THP-1 macrophages alone and CRP expression in the hepatic co-culture model. MV from hypoxic cardiomyocytes can mediate CRP expression in a hepatic co-culture model. Further studies will have to show whether these effects are reproducible in-vivo.


Assuntos
Micropartículas Derivadas de Células/patologia , Inflamação/patologia , Isquemia Miocárdica/patologia , Miócitos Cardíacos/patologia , Animais , Hipóxia Celular , Linhagem Celular , Células Cultivadas , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-6/análise , Masculino , Camundongos Endogâmicos C57BL , Ratos , Células THP-1
19.
Thromb Haemost ; 119(8): 1295-1310, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31378855

RESUMO

BACKGROUND: Microvesicles (MVs) are small cell-derived vesicles, which are mainly released by activated cells. They are part of a communication network delivering biomolecules, for example, inflammatory molecules, via the blood circulation to remote cells in the body. Platelet-derived MVs are known to induce vascular inflammation. Research on the mediators and mechanisms of their inflammatory effects has attracted major interest. We hypothesize that specific lipids are the mediators of vascular inflammation caused by platelet-derived MVs. METHODS AND RESULTS: Liquid chromatography electrospray ionization-tandem mass spectrometry was used for lipid profiling of platelet-derived MVs. Lysophosphatidylcholine (LPC) was found to be a major component of platelet-derived MVs. Investigating the direct effects of LPC, we found that it induces platelet activation, spreading, migration and aggregation as well as formation of inflammatory platelet-monocyte aggregates. We show for the first time that platelets express the LPC receptor G2AR, which mediates LPC-induced platelet activation. In a mouse model of atherosclerotic plaque instability/rupture, circulating LPC was detected as a surrogate marker of plaque instability. These findings were confirmed by matrix-assisted laser desorption ionization imaging, which showed that the LPC concentration of human plaques was highest in vulnerable plaque regions. CONCLUSION: LPC is a major component of platelet-derived MVs and via its interaction with G2AR on platelets contributes to platelet activation, spreading, migration and aggregation and ultimately to vascular inflammation. Circulating LPC reports on atherosclerotic plaque instability in mice and is significantly increased in unstable areas of atherosclerotic plaques in both mice and humans, linking LPC to plaque instability.


Assuntos
Aterosclerose/metabolismo , Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Lisofosfatidilcolinas/análise , Animais , Movimento Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Inflamação , Lipídeos/química , Espectrometria de Massas , Camundongos , Microscopia de Fluorescência , Monócitos/citologia , Permeabilidade , Placa Aterosclerótica/metabolismo , Ativação Plaquetária , Agregação Plaquetária
20.
J Mol Cell Cardiol ; 133: 138-147, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31201798

RESUMO

BACKGROUND: Sepsis-induced cardiomyopathy contributes to the high mortality of septic shock in critically ill patients. Since the underlying mechanisms are incompletely understood, we hypothesized that sepsis-induced impairment of sirtuin 3 (SIRT3) activity contributes to the development of septic cardiomyopathy. METHODS AND RESULTS: Treatment of mice with lipopolysaccharide (LPS) for 6 h resulted in myocardial NAD+ depletion and increased mitochondrial protein acetylation, indicating impaired myocardial SIRT3 activity due to NAD+ depletion. LPS treatment also resulted in impaired cardiac output in isolated working hearts, indicating endotoxemia-induced cardiomyopathy. Maintaining normal myocardial NAD+ levels in LPS-treated mice by Poly(ADP-ribose)polymerase 1 (PARP1) deletion prevented cardiac dysfunction, whereas additional SIRT3 deficiency blunted this beneficial effect, indicating that impaired SIRT3 activity contributes to cardiac dysfunction in endotoxemia. Measurements of mitochondrial ATP synthesis suggest that LPS-induced contractile dysfunction may result from cardiac energy depletion due to impaired SIRT3 activity. Pharmacological inhibition of mitochondrial calpains using MDL28170 normalized LPS-induced cleavage of the ATP5A1 subunit of ATP synthase and normalized contractile dysfunction, suggesting that cardiac energy depletion may result from calpain-mediated cleavage of ATP5A1. These beneficial effects were completely blunted by SIRT3 deficiency. Finally, a gene set enrichment analysis of hearts of patients with septic, ischemic or dilated cardiomyopathy revealed a sepsis-specific suppression of SIRT3 deacetylation targets, including ATP5A1, indicating a functional relevance of SIRT3-dependent pathways in human sepsis. CONCLUSIONS: Impaired SIRT3 activity may mediate cardiac dysfunction in endotoxemia by facilitating calpain-mediated disruption of ATP synthesis, suggesting SIRT3 activation as a potential therapeutic strategy to treat septic cardiomyopathy.


Assuntos
Trifosfato de Adenosina/biossíntese , Calpaína/metabolismo , Endotoxemia/complicações , Cardiopatias/etiologia , Cardiopatias/metabolismo , Sirtuína 3/metabolismo , Animais , Calpaína/antagonistas & inibidores , Citocinas , Modelos Animais de Doenças , Endotoxemia/etiologia , Ativação Enzimática , Cardiopatias/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Sepse/complicações , Sepse/etiologia , Transdução de Sinais , Sirtuína 3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA