Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chest ; 162(4): 861-871, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35305971

RESUMO

BACKGROUND: High-flow nasal cannula (HFNC) therapy reduces the effort of breathing in patients with bronchiolitis, but the mechanisms are not understood. Theorized mechanisms include dead space washout and positive end-expiratory pressure (PEEP) application. RESEARCH QUESTION: What are the mechanisms of action of HFNC therapy in patients with bronchiolitis? STUDY DESIGN AND METHODS: Prospective, single-center study of children 3 years of age or younger with bronchiolitis from January 2020 through March 2021. Flow was titrated between 0.5 and 2 L/kg/min. Electrical impedance tomography measured end-expiratory lung impedance (EELZ) change as an end-expiratory lung volume (EELV) change surrogate and change in tidal impedance difference (ΔZ) as a tidal volume (VT) surrogate. A subset showed manometry measuring esophageal pressure change (ΔPes; transpulmonary pressure surrogate) and pressure rate product (PRP; effort of breathing metric). We hypothesized that EELV and VT would not change and that effort would reduce via respiratory rate (not ΔPes). Measurements were reported as the difference from 0.5 L/kg/min. RESULTS: We studied 22 patients in total, 10 with esophageal manometry. Median EELZ increased by 0.36 arbitrary unit (AU), 2.42 AU, and 4.8 AU at 1 L/kg/min, 1.5 L/kg/min, and 2 L/kg/min (P = .01, 2 L/kg/min vs 0.5 L/kg/min), which corresponded to a median increase in EELV of 1.8 mL/kg between 0.5 and 2 L/kg/min. Seven patients showed an increase in EELZ of > 5 AU, 12 showed no change in EELZ (± 5 AU), and three showed a decrease in EELZ of > 5 AU. ΔZ (ie, VT) did not change from 0.5 L/kg/min to 2 L/kg/min (median change, 0.29 AU; P = .48). Median PRP decreased by 78 cm H2O/min from 0.5 L/kg/min to 2 L/kg/min (P = .02), with all patients demonstrating a reduction in PRP, with a nonsignificant change in ΔPes (P = .68). INTERPRETATION: Increasing HFNC in children with bronchiolitis reduces the effort of breathing, but no consistent increase occurs in end-expiratory lung volume and no significant change occurs in VT or transpulmonary pressure. This suggests that PEEP application is not the primary mechanism of action of HFNC in children with bronchiolitis.


Assuntos
Cânula , Respiração com Pressão Positiva , Criança , Humanos , Medidas de Volume Pulmonar , Oxigenoterapia/métodos , Respiração com Pressão Positiva/métodos , Estudos Prospectivos , Respiração
2.
Ecol Appl ; 24(2): 385-95, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24689149

RESUMO

The conservation of species at risk of extinction requires data to support decisions at landscape to regional scales. There is a need for information that can assist with locating suitable habitats in fragmented and degraded landscapes to aid the reintroduction of at-risk plant species. In addition, desiccation and water stress can be significant barriers to the success of at-risk plant reintroduction programs. We examine how airborne light detection and ranging (LiDAR) data can be used to model microtopographic features that reduce water stress and increase resource availability, providing information for landscape planning that can increase the success of reintroduction efforts for a dryland landscape in Hawaii. We developed a topographic habitat-suitability model (HSM) from LiDAR data that identifies topographic depressions that are protected from prevailing winds (high-suitability sites) and contrasts them with ridges and other exposed areas (low-suitability sites). We tested in the field whether high-suitability sites had microclimatic conditions that indicated better-quality habitat compared to low-suitability sites, whether plant-response traits indicated better growing conditions in high-suitability sites, whether the locations of individuals of existing at-risk plant species corresponded with our habitat-suitability classes, and whether the survival of planted individuals of a common native species was greater in high-suitability, compared to low-suitability, planting sites. Mean wind speed in a high-suitability field site was over five times lower than in a low-suitability site, and soil moisture and leaf wetness were greater, indicating less stress and greater resource availability in high-suitability areas. Plant height and leaf nutrient content were greater in high-suitability areas. Six at-risk species showed associations with high-suitability areas. The survival of planted individuals was less variable among high-suitability plots. These results suggest that plant establishment and survival is associated with the habitat conditions identified by our model. The HSM can improve the survival of planted individuals, reduce the cost of restoration and reintroduction programs through targeted management activities in high-suitability areas, and expand the ability of managers to make landscape-scale decisions regarding land-use, land acquisition, and species recovery.


Assuntos
Ecossistema , Espécies em Perigo de Extinção , Plantas/classificação , Clima , Havaí , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA