Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Vaccine ; 41(17): 2829-2836, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36997386

RESUMO

BACKGROUND: Nursing home residents, a frail and old population group, respond poorly to primary mRNA COVID-19 vaccination. A third dose has been shown to boost protection against severe disease and death in this immunosenescent population, but limited data is available on the immune responses it induces. METHODS: In this observational cohort study, peak humoral and cellular immune responses were compared 28 days after the second and third doses of the BNT162b2 mRNA COVID-19 vaccine in residents and staff members of two Belgian nursing homes. Only individuals without evidence of previous SARS-CoV-2 infection at third dose administration were included in the study. In addition, an extended cohort of residents and staff members was tested for immune responses to a third vaccine dose and was monitored for vaccine breakthrough infections in the following six months. The trial is registered on ClinicalTrials.gov (NCT04527614). FINDINGS: All included residents (n = 85) and staff members (n = 88) were SARS-CoV-2 infection naïve at third dose administration. Historical blood samples from 28 days post second dose were available from 42 residents and 42 staff members. Magnitude and quality of humoral and cellular immune responses were strongly boosted in residents post third compared to post second dose. Increases were less pronounced in staff members than in residents. At 28 days post third dose, differences between residents and staff had become mostly insignificant. Humoral, but not cellular, responses induced by a third dose were predictive of subsequent incidence of vaccine breakthrough infection in the six months following vaccination. INTERPRETATION: These data show that a third dose of mRNA COVID-19 vaccine largely closes the gap in humoral and cellular immune response observed after primary vaccination between NH residents and staff members but suggest that further boosting might be needed to achieve optimal protection against variants of concern in this vulnerable population group.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Adulto , Grupos Populacionais , Vacina BNT162 , COVID-19/prevenção & controle , SARS-CoV-2 , Infecções Irruptivas , Casas de Saúde , RNA Mensageiro , Imunidade , Anticorpos Antivirais , Vacinas de mRNA
2.
Viruses ; 14(9)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36146757

RESUMO

Wastewater-based surveillance was conducted by the national public health authority to monitor SARS-CoV-2 circulation in the Belgian population. Over 5 million inhabitants representing 45% of the Belgian population were monitored throughout 42 wastewater treatment plants for 15 months comprising three major virus waves. During the entire period, a high correlation was observed between the daily new COVID-19 cases and the SARS-CoV-2 concentration in wastewater corrected for rain impact and covered population size. Three alerting indicators were included in the weekly epidemiological assessment: High Circulation, Fast Increase, and Increasing Trend. These indicators were computed on normalized concentrations per individual treatment plant to allow for a comparison with a reference period as well as between analyses performed by distinct laboratories. When the indicators were not corrected for rain impact, rainy events caused an underestimation of the indicators. Despite this negative impact, the indicators permitted us to effectively monitor the evolution of the fourth virus wave and were considered complementary and valuable information to conventional epidemiological indicators in the weekly wastewater reports communicated to the National Risk Assessment Group.


Assuntos
COVID-19 , SARS-CoV-2 , Bélgica/epidemiologia , COVID-19/epidemiologia , Humanos , Saúde Pública , RNA Viral , Águas Residuárias
3.
Clin Infect Dis ; 75(1): e695-e704, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34864935

RESUMO

BACKGROUND: Residents of nursing homes (NHs) are at high risk of coronavirus disease 2019 (COVID-19)-related disease and death and may respond poorly to vaccination because of old age and frequent comorbid conditions. METHODS: Seventy-eight residents and 106 staff members, naive to infection or previously infected with severe acute respiratory syndrome coronavirus (SARS-CoV-2), were recruited in NHs in Belgium before immunization with 2 doses of 30 µg BNT162b2 messenger RNA (mRNA) vaccine at days 0 and 21. Binding antibodies (Abs) to SARS-CoV-2 receptor-binding domain (RBD), spike domains S1 and S2, RBD Ab avidity, and neutralizing Abs against SARS-CoV-2 wild type and B.1.351 were assessed at days 0, 21, 28, and 49. RESULTS: SARS-CoV-2-naive residents had lower Ab responses to BNT162b2 mRNA vaccination than naive staff. These poor responses involved lower levels of immunoglobulin (Ig) G to all spike domains, lower avidity of RBD IgG, and lower levels of Abs neutralizing the vaccine strain. No naive residents had detectable neutralizing Abs to the B.1.351 variant. In contrast, SARS-CoV-2-infected residents had high responses to mRNA vaccination, with Ab levels comparable to those in infected staff. Cluster analysis revealed that poor vaccine responders included not only naive residents but also naive staff, emphasizing the heterogeneity of responses to mRNA vaccination in the general population. CONCLUSIONS: The poor Ab responses to mRNA vaccination observed in infection-naive NH residents and in some naive staff members suggest suboptimal protection against breakthrough infection, especially with variants of concern. These data support the administration of a third dose of mRNA vaccine to further improve protection of NH residents against COVID-19.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Imunoglobulina G , Casas de Saúde , RNA Mensageiro , SARS-CoV-2 , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
4.
PLOS Glob Public Health ; 2(12): e0001308, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962838

RESUMO

Fractional dosing of COVID-19 vaccines could accelerate vaccination rates in low-income countries. Dose-finding studies of the mRNA vaccine BNT162b2 (Pfizer-BioNTech) suggest that a fractional dose induces comparable antibody responses to the full dose in people <55 years. Here, we report the safety and immunogenicity of a fractional dose regimen of the BNT162b2 vaccine. REDU-VAC is a participant-blinded, randomised, phase 4, non-inferiority study. Adults 18-55 years old, either previously infected or infection naïve, were randomly assigned to receive 20µg/20µg (fractional dose) or 30µg/30µg (full dose) of BNT162b2. The primary endpoint was the geometric mean ratio (GMR) of SARS-CoV-2 anti-RBD IgG titres at 28 days post second dose between the reduced and full dose regimens. The reduced dose was considered non-inferior to the full dose if the lower limit of the two-sided 95% CI of the GMR was >0.67. Primary analysis was done on the per-protocol population, including infection naïve participants only. 145 participants were enrolled and randomized, were mostly female (69.5%), of European origin (95%), with a mean age of 40.4 years (SD 7.9). At 28 days post second dose, the geometric mean titre (GMT) of anti-RBD IgG of the reduced dose regimen (1,705 BAU/mL) was not non-inferior to the full dose regimen (2,387 BAU/mL), with a GMR of 0.714 (two-sided 95% CI 0.540-0.944). No serious adverse events occurred. While non-inferiority of the reduced dose regimen was not demonstrated, the anti-RBD IgG titre was only moderately lower than that of the full dose regimen and, importantly, still markedly higher than the reported antibody response to the licensed adenoviral vector vaccines. These data suggest that reduced doses of the BNT162b2 mRNA vaccine may offer additional benefit as compared to the vaccines currently in use in most low and middle-income countries, warranting larger immunogenicity and effectiveness trials. Trial Registration: The trial is registered at ClinicalTrials.gov (NCT04852861).

5.
Arch Public Health ; 79(1): 195, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34763723

RESUMO

BACKGROUND: The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented itself as one of the most important health concerns of the 2020's, and hit the geriatric population the hardest. The presence of co-morbidities and immune ageing in the elderly lead to an increased susceptibility to COVID-19, as is the case for other influenza-like illnesses (ILI) or acute respiratory tract infections (ARI). However, little is known, about the impact of a previous or current infection on the other in terms of susceptibility, immune response, and clinical course. The aim of the "Prior Infection with SARS-COV-2" (PICOV) study is to compare the time to occurrence of an ILI or ARI between participants with a confirmed past SARS-CoV-2 infection (previously infected) and those without a confirmed past infection (naïve) in residents and staff members of nursing homes. This paper describes the study design and population characteristics at baseline. METHODS: In 26 Belgian nursing homes, all eligible residents and staff members were invited to participate, resulting in 1,226 participants. They were classified as naïve or previously infected based on the presence of detectable SARS-CoV-2 antibodies and/or a positive RT-qPCR result before participation in the study. Symptoms from a prior SARS-CoV-2 infection between March and August 2020 were compared between previously infected residents and staff members. RESULTS: Infection naïve nursing home residents reported fewer symptoms than previously infected residents: on average 1.9 and 3.1 symptoms, respectively (p = 0.016). The same effect was observed for infection naïve staff members and previously infected staff members (3.1 and 6.1 symptoms, respectively; p <0.0001). Moreover, the antibody development after a SARS-CoV-2 infection differs between residents and staff members, as previously infected residents tend to have a higher rate of asymptomatic cases compared to previously infected staff members (20.5% compared to 12.4%; p <0.0001). CONCLUSIONS: We can postulate that COVID-19 disease development and symptomatology are different between a geriatric and younger population. Therefore, the occurrence and severity of a future ILI and/or ARI might vary from resident to staff.

6.
J Clin Virol ; 142: 104897, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34304089

RESUMO

OBJECTIVES: Assess the performance of five SARS-CoV-2 rapid serological tests (RST) using finger prick (FP) blood on-site to evaluate their usability for exposure assessment in population-based seroprevalence studies. STUDY DESIGN: Since cross-reactivity with common cold human coronaviruses occurs, serological testing includes a risk of false-positive results. Therefore, the selected cohort for RST-validation was based on combined immunoassay (presence of specific antibodies) and RT-qPCR (presence of SARS-CoV-2) data. RST-performance for FP blood and serum was assessed by performing each RST in two groups, namely SARSCoV- 2 positive (n=108) and negative healthcare workers (n=89). Differences in accuracy and positive and negative predictive values (PPV, NPV) were calculated for a range (1-50%) of SARS-CoV-2 prevalence estimates. RESULTS: The OrientGene showed overall acceptable performance, with sensitivities of 94.4% and 100%, and specificities of 96.6% and 94.4%, using FP blood and serum, respectively. Although three RST reach optimal specificities (100%), the OrientGene clearly outperforms in sensitivity. At a SARS-CoV-2 prevalence rate of 40%, this RST outperforms the other tests in NPV (96.3%) and reaches comparable PPV (94.9%). Although the specificity of the Covid-Presto is excellent when using FP blood or serum (100% and 97.8%, respectively), its sensitivity decreases when using FP blood (76.9%) compared to serum (98.1%). CONCLUSIONS: Performances of the evaluated RST differ largely. Only one out of five RST (OrientGene) had acceptable sensitivity and specificity using FP blood. Therefore, the latter could be used for seroprevalence studies in a high-prevalence situation. The OrientGene, which measures anti-RBD antibodies, can be valuable after vaccination as well.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Humanos , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Testes Sorológicos
8.
Food Microbiol ; 91: 103534, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32539977

RESUMO

Humans are mostly contaminated by Salmonella through the consumption of pork- and poultry-derived food products. Therefore, a strict monitoring of Salmonella serotypes in food-producing animals is needed to limit the transmission of the pathogen to humans. Additionally, Salmonella can lead to economic loss in the food sector. Previously, a genoserotyping method using the MOL-PCR and Luminex technology was developed for the identification of the 6 Salmonella serotypes, and their variants, subjected to an official control in the Belgian food sector. In this study, 3 additional assays using the same technology were developed for the rapid and cost-effective detection of 13 dangerous highly invasive serotypes or other serotypes frequently isolated from the Belgian poultry and pork sector, i.e. Agona, Anatum, Brandenburg, Choleraesuis, Derby, Enteritidis vaccine strains, Gallinarum var. Gallinarum/Pullorum, Livingstone, Mbandaka, Minnesota, Ohio, Rissen and Senftenberg. Moreover, the previously developed first MOL-PCR assay was improved for S. Paratyphi B and serogroup O:3 detection. Finally, a Decision Support System hosted by a web application was created for an automatic and objective interpretation of the Luminex raw data. The 3 new assays and the modifications of the first assay were validated with a 100% accuracy, using 553 Salmonella and non-Salmonella strains in total.


Assuntos
Microbiologia de Alimentos/métodos , Carne de Porco/microbiologia , Aves Domésticas/microbiologia , Salmonella/isolamento & purificação , Animais , Bélgica , Técnicas de Apoio para a Decisão , Reação em Cadeia da Polimerase Multiplex , Reprodutibilidade dos Testes , Salmonella/classificação , Salmonella/genética , Sorogrupo , Suínos , Fatores de Tempo
9.
Artigo em Inglês | MEDLINE | ID: mdl-32373554

RESUMO

Toxoplasma gondii is an obligate intracellular parasite, able to infect all homeothermic animals mostly through ingestion of (oo)cysts contaminated food or water. Recently, we observed a T. gondii strain-specific clearance from tissues upon infection in pigs: while the swine-adapted LR strain persisted in porcine tissues, a subsequent infection with the human-isolated Gangji strain cleared parasites from several tissues. We hypothesized that intestinal immune responses shortly after infection might play a role in this strain-specific clearance. To assess this possibility, the parasite load in small intestinal lymph node cells and blood immune cells as well as the IFNγ secretion by these cells were evaluated at 2, 4, 8, 14, and 28 days post oral inoculation of pigs with tissue cysts of both strains. Interestingly, at day 4 post inoculation with the LR strain the parasite was detected by qPCR only in the duodenal lymph node cells, while in the jejunal and ileal lymph node cells and PBMCs the parasite was detected from day 8 post inoculation onwards. Although we observed a similar profile upon inoculation with the Gangji strain, the parasite load in the examined cells was much lower. This was reflected in a significantly higher T. gondii-specific serum IgG response in LR compared to Gangji infected pigs at day 28 post inoculation. Unexpectedly, this was not reflected in the IFNγ secretion upon re-stimulation of the cells where almost equal IFNγ secretion was observed in both groups. In conclusion, our results show that T. gondii first enters the host at the duodenum and then probably disseminates from this site to the other tissues. How the early immune response influences the clearance of parasite from tissues needs further study.


Assuntos
Doenças dos Suínos , Toxoplasma , Toxoplasmose Animal , Animais , Imunidade , Cinética , Suínos
10.
Foodborne Pathog Dis ; 17(5): 316-321, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31905293

RESUMO

Toxoplasma gondii is a worldwide prevalent, zoonotic parasite of major importance for public health, which can infect any warm-blooded animal species, including humans. Humans can get infected by consumption of meat from a chronically infected animal, by ingestion of sporulated oocysts (resulting from the sexual replication in felids), via contaminated water, soil, or vegetables, and by vertical transmission via the placenta. Infection through meat consumption is estimated to be one of the main sources of human toxoplasmosis cases in developed countries, and more specifically pork is considered to be responsible for 41% of foodborne human toxoplasmosis cases in the United States. To better assess the role of pork as a source of T. gondii infection in humans in Belgium, parasites were isolated from pigs to compare with human clinical isolates in a molecular epidemiological study. A positive result was obtained by magnetic capture-quantitative polymerase chain reaction for T. gondii in 14 out of the 92 hearts sampled during 2016 and 2017 from pigs raised in organic farms. From 9 of these 14 samples, parasites were isolated by mouse bioassay, demonstrating the presence of viable T. gondii in animals intended for human consumption. When genotyped and compared with 15 human isolates obtained during 2015 and 2016, a highly related structured population was demonstrated. Overall, these findings demonstrate the presence of infectious T. gondii in pigs intended for human consumption. Therefore, a potential transmission of T. gondii strains from pigs to humans could occur. However, both species could also be infected via a common source of infection such as oocysts. Furthermore, Belgium does not have an official surveillance program for T. gondii in human cases or food-producing animals; as a consequence, the detection of the infection source of a patient is very rare. Overall, this study reinforces the identification of pork as a potential risk for the consumers.


Assuntos
Toxoplasma/genética , Toxoplasma/isolamento & purificação , Toxoplasmose/epidemiologia , Animais , Bélgica/epidemiologia , DNA de Protozoário , Feminino , Contaminação de Alimentos , Parasitologia de Alimentos , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/parasitologia , Técnicas de Genotipagem , Humanos , Camundongos , Epidemiologia Molecular , Reação em Cadeia da Polimerase , Testes Sorológicos , Suínos , Toxoplasmose/parasitologia
11.
PLoS One ; 15(1): e0227833, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31951631

RESUMO

The aim of this study is to characterize the antimicrobial resistance of Campylobacter jejuni recovered from diarrheal patients in Belgium, focusing on the genetic diversity of resistant strains and underlying molecular mechanisms of resistance among Campylobacter jejuni resistant strains isolated from diarrheal patients in Belgium. Susceptibility profile of 199 clinical C. jejuni isolates was determined by minimum inhibitory concentrations against six commonly-used antibiotics (ciprofloxacin, nalidixic acid, tetracycline, streptomycin, gentamicin, and erythromycin). High rates of resistance were observed against nalidixic acid (56.3%), ciprofloxacin (55.8%) and tetracycline (49.7%); these rates were similar to those obtained from different national reports in broilers intended for human consumption. Alternatively, lower resistance rates to streptomycin (4.5%) and erythromycin (2%), and absolute sensitivity to gentamicin were observed. C. jejuni isolates resistant to tetracycline or quinolones (ciprofloxacin and/or nalidixic acid) were screened for the presence of the tetO gene and the C257T mutation in the quinolone resistance determining region (QRDR) of the gyrase gene gyrA, respectively. Interestingly, some of the isolates that displayed phenotypic resistance to these antimicrobials lacked the corresponding genetic determinants. Among erythromycin-resistant isolates, a diverse array of potential molecular resistance mechanisms was investigated, including the presence of ermB and mutations in the 23S rRNA gene, the rplD and rplV ribosomal genes, and the regulatory region of the cmeABC operon. Two of the four erythromycin-resistant isolates harboured the A2075G transition mutation in the 23S rRNA gene; one of these isolates exhibited further mutations in rplD, rplV and in the cmeABC regulatory region. This study expands the current understanding of how different genetic determinants and particular clones shape the epidemiology of antimicrobial resistance in C. jejuni in Belgium. It also reveals many questions in need of further investigation, such as the role of other undetermined molecular mechanisms that may potentially contribute to the antimicrobial resistance of Campylobacter.


Assuntos
Antibacterianos/farmacologia , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/genética , Diarreia/microbiologia , Farmacorresistência Bacteriana , Infecções por Campylobacter/tratamento farmacológico , Campylobacter jejuni/efeitos dos fármacos , Diarreia/tratamento farmacológico , Genes Bacterianos/efeitos dos fármacos , Humanos , Tipagem de Sequências Multilocus , Mutação/efeitos dos fármacos
12.
Food Microbiol ; 87: 103394, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31948635

RESUMO

Salmonella is a major pathogen having a public health and economic impact in both humans and animals. Six serotypes of the Salmonella genus are mentioned in the Belgian and European regulation as to be rapidly excluded from the food chain (EU regulation N°2160/2003, Belgian royal decree 27/04/2017). The reference method for Salmonella serotyping, including slide-agglutination and biochemical tests, is time-consuming, expensive, not always objective, and therefore does not match the fast identification criteria required by the legislation. In this study, a molecular method, using genetic markers detected by Multiplex Oligonucleotide Ligation - PCR and Luminex technology, was developed for the identification of the 6 Salmonella serotypes and their variants subjected to an official control. The resulting method was validated with the analysis of 971 Salmonella isolated from different matrixes (human, animal, food or environment) and 33 non-Salmonella strains. The results were compared with the reference identifications, achieving an accuracy of 99.7%. The cost-effective high-throughput genoserotyping assay is performed in 1 day and generates objective results, thanks to the automatic interpretation of raw data using a barcode system. In conclusion, it is fully adapted to the implementation in first line laboratories and meets the requirements of the regulation.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Oligonucleotídeos/genética , Salmonella/isolamento & purificação , Animais , Microbiologia Ambiental , Humanos , Salmonella/classificação , Salmonella/genética , Infecções por Salmonella/microbiologia , Sensibilidade e Especificidade
13.
Front Immunol ; 10: 2223, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620134

RESUMO

Toxoplasma gondii is an intracellular parasite of all mammals and birds, responsible for toxoplasmosis. In healthy individuals T. gondii infections mostly remain asymptomatic, however this parasite causes severe morbidity and mortality in immunocompromised patients and congenital toxoplasmosis in pregnant women. The consumption of raw or undercooked pork is considered as an important risk factor to develop toxoplasmosis in humans. Since effective therapeutic interventions to treat toxoplasmosis are scarce, vaccination of meat producing animals may prevent T. gondii transmission to humans. Here, we evaluated the elicited immune responses and the efficacy of a potential vaccine candidate, generated by size fractionation of T. gondii lysate proteins, to reduce the parasite burden in tissues from experimentally T. gondii infected pigs as compared to vaccination with total lysate antigens (TLA). Our results show that both the vaccine candidate and the TLA immunization elicited strong serum IgG responses and elevated percentages of CD4+CD8+IFNγ+ T cells in T. gondii infected pigs. However, the TLA vaccine induced the strongest immune response and reduced the parasite DNA load below the detection limit in brain and skeletal muscle tissue in most animals. These findings might inform the development of novel vaccines to prevent T. gondii infections in livestock species and humans.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos de Protozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , DNA/imunologia , Interferon gama/imunologia , Saponinas de Quilaia/imunologia , Toxoplasma/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Feminino , Imunoglobulina G/imunologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Suínos , Toxoplasmose Animal/imunologia , Vacinação/métodos
14.
Appl Microbiol Biotechnol ; 103(12): 4987-4996, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31062054

RESUMO

Discriminating between D-tartrate fermenting and non-fermenting strains of Salmonella enterica subsp. enterica serotype Paratyphi B is of major importance as these two variants have different pathogenic profiles. While D-tartrate non-fermenting S. Paratyphi B isolates are the causative agent of typhoid-like fever, D-tartrate fermenting isolates (also called variant Java) of the same serotype trigger the less dangerous gastroenteritis. The determination of S. Paratyphi B variants requires a time-consuming process and complex biochemical tests. Therefore, a quadruplex real-time PCR method, based on the allelic discrimination of molecular markers selected from the scientific literature and from whole genome sequencing data produced in-house, was developed in this study, to be applied to Salmonella isolates. This method was validated with the analysis of 178 S. Paratyphi B (D-tartrate fermenting and non-fermenting) and other serotypes reaching an accuracy, compared with the classical methods, of 98% for serotyping by slide agglutination and 100% for replacement of the biochemical test. The developed real-time PCR permits to save time and to obtain an accurate identification of a S. Paratyphi B serotype and its D-tartrate fermenting profile, which is needed in routine laboratories for fast and efficient diagnostics.


Assuntos
Técnicas de Tipagem Bacteriana , Técnicas de Genotipagem , Reação em Cadeia da Polimerase em Tempo Real/métodos , Salmonella paratyphi B/classificação , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Fermentação , Variação Genética , Humanos , Indonésia , Testes de Sensibilidade Microbiana , Reprodutibilidade dos Testes , Salmonella paratyphi B/efeitos dos fármacos , Tartaratos/metabolismo , Sequenciamento Completo do Genoma
15.
Transbound Emerg Dis ; 66(1): 463-475, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30346650

RESUMO

The aim of this study was to better understand the molecular epidemiology of Campylobacter coli isolated from multiple sources in Belgium, by studying the genotypic diversity and antimicrobial resistance phenotypes and resistance mechanisms of 59 C. coli isolates. Isolates from broiler carcasses and human cases were genotyped using multilocus sequence typing (MLST), porA typing, flagellin gene A restriction fragment length polymorphism (flaA-RFLP) typing, and by PCR binary typing (P-BIT). Thirty-two MLST sequence types, 24 flaA types, 31 porA alleles, and 29 P-BIT types were identified among the screened isolates. Some types and alleles were shared among strains recovered from both broiler carcasses and diarrhoeal patients. Both porA typing and MLST revealed a similar discriminatory power (0.969), which was the highest discriminatory power when compared to other methods. Minimum inhibitory concentrations against seven different antibiotics (ciprofloxacin, chloramphenicol, nalidixic acid, streptomycin, tetracycline, gentamicin, and erythromycin) were analysed. Strains were most frequently resistant to tetracycline (81.4%), followed by: ciprofloxacin and nalidixic acid (76.3%); streptomycin (33.9%); erythromycin (27.1%); and chloramphenicol (3.4%). All isolates were sensitive to gentamicin. Multidrug resistance was observed in 24 of 59 C. coli isolates (40.7%). Molecular screening of antimicrobial resistance mechanisms revealed the predominance of the gyrA T86I substitution among ciprofloxacin- and nalidixic acid-resistant isolates, the tet(O) gene among tetracycline-resistant isolates and the 23S rRNA A2075G mutation among erythromycin- resistant isolates. Furthermore, some erythromycin-resistant isolates harboured a diverse array of resistance mechanisms, including the presence of ermB, 23S rRNA A2074G mutation, and point mutations the rplD and rplV ribosomal genes, and the cmeABC multidrug efflux pump genes.


Assuntos
Antibacterianos/farmacologia , Infecções por Campylobacter/veterinária , Campylobacter coli/efeitos dos fármacos , Galinhas/microbiologia , Diarreia/microbiologia , Farmacorresistência Bacteriana/genética , Doenças das Aves Domésticas/tratamento farmacológico , Animais , Bélgica , Infecções por Campylobacter/tratamento farmacológico , Infecções por Campylobacter/microbiologia , Campylobacter coli/isolamento & purificação , Ciprofloxacina , Flagelina/genética , Humanos , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Polimorfismo de Fragmento de Restrição , Doenças das Aves Domésticas/microbiologia , RNA Ribossômico 23S/genética
16.
Front Microbiol ; 9: 1014, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867900

RESUMO

Human campylobacteriosis is the leading food-borne zoonosis in industrialized countries. This study characterized the clonal population structure, antimicrobial resistance profiles and occurrence of antimicrobial resistance determinants of a set of Campylobacter jejuni strains isolated from broiler carcasses in Belgium. Minimum inhibitory concentrations (MICs) against five commonly-used antibiotics (ciprofloxacin, nalidixic acid, tetracycline, gentamicin, and erythromycin) were determined for 204 C. jejuni isolates. More than half of the isolates were resistant to ciprofloxacin or nalidixic acid. In contrast, a lower percentage of screened isolates were resistant to gentamicin or erythromycin. C. jejuni isolates resistant to ciprofloxacin and/or nalidixic acid were screened for the substitution T86I in the quinolone resistance determining region (QRDR) of the gyrA gene, while C. jejuni isolates resistant to tetracycline were screened for the presence of the tet(O) gene. These resistance determinants were observed in most but not all resistant isolates. Regarding resistance to erythromycin, different mutations occurred in diverse genetic loci, including mutations in the 23S rRNA gene, the rplD and rplV ribosomal genes, and the intergenic region between cmeR and cmeABC. Interestingly, and contrary to previous reports, the A2075G transition mutation in the 23S rRNA gene was only found in one strain displaying a high level of resistance to erythromycin. Ultimately, molecular typing by multilocus sequence typing revealed that two sequence types (ST-824 and ST-2274) were associated to quinolones resistance by the presence of mutations in the gene gyrA (p = 0.01). In addition, ST-2274 was linked to the CIP-NAL-TET-AMR multidrug resistant phenotype. In contrast, clonal complex CC-45 was linked to increased susceptibility to the tested antibiotics. The results obtained in this study provide better understanding of the phenotypic and the molecular basis of antibiotic resistance in C. jejuni, unraveling some the mechanisms which confer antimicrobial resistance and particular clones associated to the carriage and spread of resistance genes.

17.
Int J Parasitol ; 48(7): 555-560, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29625125

RESUMO

Toxoplasma gondii is an ubiquitous apicomplexan parasite which can infect any warm-blooded animal including humans. Humans and carnivores/omnivores can also become infected by consumption of raw or undercooked infected meat containing muscle cysts. This route of transmission is considered to account for at least 30% of human toxoplasmosis cases. To better assess the role of pork as a source of infection for humans, the parasite burden resulting from experimental infection with different parasite stages and different strains of T. gondii during the acute and chronic phases was studied. The parasite burden in different tissues was measured with a ISO 17025 validated Magnetic Capture-quantitative PCR. A high burden of infection was found in heart and lungs during the acute phase of infection and heart and brain were identified as the most parasitised tissues during the chronic phase of infection, independent of the parasite stage and the strain used. Remarkably, a higher parasite burden was measured in different tissues following infection with oocysts of a type II strain compared with a tissue cyst infection with three strains of either type II or a type I/II. However, these results could have been affected by the use of different strains and euthanasia time points. The parasite burden resulting from a tissue cyst infection was not significantly different between the two strains.


Assuntos
Parasitologia de Alimentos , Carne Vermelha/parasitologia , Doenças dos Suínos/parasitologia , Toxoplasma/classificação , Toxoplasmose Animal/parasitologia , Zoonoses , Doença Aguda , Animais , Doença Crônica , Coração/parasitologia , Humanos , Pulmão/parasitologia , Suínos , Fatores de Tempo , Toxoplasmose Animal/transmissão
18.
Int J Food Microbiol ; 275: 66-75, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29649751

RESUMO

Campylobacter jejuni is a zoonotic pathogen commonly associated with human gastroenteritis. Retail poultry meat is a major food-related transmission source of C. jejuni to humans. The present study investigated the genetic diversity, clonal relationship, and strain risk-analysis of 403 representative C. jejuni isolates from chicken broilers (n = 204) and sporadic cases of human diarrhea (n = 199) over a decade (2006-2015) in Belgium, using multilocus sequence typing (MLST), PCR binary typing (P-BIT), and identification of lipooligosaccharide (LOS) biosynthesis locus classes. A total of 123 distinct sequence types (STs), clustered in 28 clonal complexes (CCs) were assigned, including ten novel sequence types that were not previously documented in the international database. Sequence types ST-48, ST-21, ST-50, ST-45, ST-464, ST-2274, ST-572, ST-19, ST-257 and ST-42 were the most prevalent. Clonal complex 21 was the main clonal complex in isolates from humans and chickens. Among observed STs, a total of 35 STs that represent 72.2% (291/403) of the isolates were identified in both chicken and human isolates confirming considerable epidemiological relatedness; these 35 STs also clustered together in the most prevalent CCs. A majority of the isolates harbored sialylated LOS loci associated with potential neuropathic outcomes in humans. Although the concordance between MLST and P-BIT, determined by the adjusted Rand and Wallace coefficients, showed low congruence between both typing methods. The discriminatory power of P-BIT and MLST was similar, with Simpson's diversity indexes of 0.978 and 0.975, respectively. Furthermore, P-BIT could provide additional epidemiological information that would provide further insights regarding the potential association to human health from each strain. In addition, certain clones could be linked to specific clinical symptoms. Indeed, LOS class E was associated with less severe infections. Moreover, ST-572 was significantly associated with clinical infections occurring after travelling abroad. Ultimately, the data generated from this study will help to better understand the molecular epidemiology of C. jejuni infection.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni/isolamento & purificação , Galinhas/microbiologia , Gastroenterite/epidemiologia , Aves Domésticas/microbiologia , Animais , Antibacterianos/uso terapêutico , Técnicas de Tipagem Bacteriana , Bélgica/epidemiologia , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/transmissão , Infecções por Campylobacter/veterinária , Campylobacter jejuni/classificação , Campylobacter jejuni/genética , Gastroenterite/microbiologia , Variação Genética/genética , Humanos , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase
19.
Appl Microbiol Biotechnol ; 102(7): 3267-3285, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29460001

RESUMO

A detection and discrimination system for five Escherichia coli pathotypes, based on a combination of 13 SYBR® Green qPCR, has been developed, i.e., combinatory SYBR® Green qPCR screening system for pathogenic E. coli (CoSYPS Path E. coli). It allows the discrimination on isolates and the screening of potential presence in food of the following pathotypes of E. coli: shigatoxigenic (STEC) (including enterohemorrhagic (EHEC)), enteropathogenic (EPEC), enteroaggregative (EAggEC), enteroaggregative shigatoxigenic (EAggSTEC), and enteroinvasive (EIEC) E. coli. The SYBR® Green qPCR assays target the uidA, ipaH, eae, aggR, aaiC, stx1, and stx2 genes. uidA controls for E. coli presence and all the other genes are specific targets of E. coli pathotypes. For each gene, two primer pairs have been designed to guarantee a sufficient detection even in case of deletion or polymorphisms in the target gene. Moreover, all the qPCR have been designed to be run together in a single analytical PCR plate. This study includes the primer pairs' design, in silico and in situ selectivity, sensitivity, repeatability, and reproducibility evaluation of the 13 SYBR® Green qPCR assays. Each target displayed a selectivity of 100%. The limit of detection of the 13 assays is between 1 and 10 genomic copies. Their repeatability and reproducibility comply with the European requirements. As a preliminary feasibility study on food, the CoSYPS Path E. coli system was subsequently evaluated on four food matrices artificially contaminated with pathogenic E. coli. It allowed the detection of an initial contamination level as low as 2 to 7 cfu of STEC/25 g of food matrix after 24 h of enrichment.


Assuntos
Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/genética , Microbiologia de Alimentos/métodos , Reação em Cadeia da Polimerase em Tempo Real , Escherichia coli Enteropatogênica/isolamento & purificação , Proteínas de Escherichia coli/genética , Limite de Detecção , Reprodutibilidade dos Testes , Especificidade da Espécie
20.
Foodborne Pathog Dis ; 15(2): 114-117, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29182477

RESUMO

A collection of 105 colistin-resistant Salmonella isolates collected from 2012 to 2015 in the national surveillance program in Belgium was screened by PCR for the presence of genes mcr-1 and mcr-2. Of these, 1.90% (2/105) and 0.95% (1/105) tested positive for mcr-1 and mcr-2, respectively. The presence of the mcr-1 or mcr-2 determinant has been confirmed by whole genome sequencing and allowed the localization of these two genes on IncX4 type plasmids. We report here the presence of mcr-1 and the first mcr-2 gene in Salmonella ever isolated in the Belgian food chain. Although present at retail since 2012, the occurrence is low and sporadic.


Assuntos
Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Contaminação de Alimentos , Salmonella/genética , Salmonella/isolamento & purificação , Antibacterianos/farmacologia , Bélgica , DNA Bacteriano/isolamento & purificação , Microbiologia de Alimentos , Genes Bacterianos , Testes de Sensibilidade Microbiana , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA