Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 13(5): 2152-2175, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250172

RESUMO

We describe the development of quinolylnitrones (QNs) as multifunctional ligands inhibiting cholinesterases (ChEs: acetylcholinesterase and butyrylcholinesterase-hBChE) and monoamine oxidases (hMAO-A/B) for the therapy of neurodegenerative diseases. We identified QN 19, a simple, low molecular weight nitrone, that is readily synthesized from commercially available 8-hydroxyquinoline-2-carbaldehyde. Quinolylnitrone 19 has no typical pharmacophoric element to suggest ChE or MAO inhibition, yet unexpectedly showed potent inhibition of hBChE (IC50 = 1.06 ± 0.31 nmol/L) and hMAO-B (IC50 = 4.46 ± 0.18 µmol/L). The crystal structures of 19 with hBChE and hMAO-B provided the structural basis for potent binding, which was further studied by enzyme kinetics. Compound 19 acted as a free radical scavenger and biometal chelator, crossed the blood-brain barrier, was not cytotoxic, and showed neuroprotective properties in a 6-hydroxydopamine cell model of Parkinson's disease. In addition, in vivo studies showed the anti-amnesic effect of 19 in the scopolamine-induced mouse model of AD without adverse effects on motoric function and coordination. Importantly, chronic treatment of double transgenic APPswe-PS1δE9 mice with 19 reduced amyloid plaque load in the hippocampus and cortex of female mice, underscoring the disease-modifying effect of QN 19.

2.
Antioxidants (Basel) ; 11(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36139811

RESUMO

Nowadays, most stroke patients are treated exclusively with recombinant tissue plasminogen activator, a drug with serious side effects and limited therapeutic window. For this reason, and because of the known effects of oxidative stress on stroke, a more tolerable and efficient therapy for stroke is being sought that focuses on the control and scavenging of highly toxic reactive oxygen species by appropriate small molecules, such as nitrones with antioxidant properties. In this context, herein we report here the synthesis, antioxidant, and neuroprotective properties of twelve novel polyfunctionalized α-phenyl-tert-butyl(benzyl)nitrones. The antioxidant capacity of these nitrones was investigated by various assays, including the inhibition of lipid peroxidation induced by AAPH, hydroxyl radical scavenging assay, ABTS+-decoloration assay, DPPH scavenging assay, and inhibition of soybean lipoxygenase. The inhibitory effect on monoamine oxidases and cholinesterases and inhibition of ß-amyloid aggregation were also investigated. As a result, (Z)-N-benzyl-1-(2-(3-(piperidin-1-yl)propoxy)phenyl)methanimine oxide (5) was found to be one of the most potent antioxidants, with high ABTS+ scavenging activity (19%), and potent lipoxygenase inhibitory capacity (IC50 = 10 µM), selectively inhibiting butyrylcholinesterase (IC50 = 3.46 ± 0.27 µM), and exhibited neuroprotective profile against the neurotoxicant okadaic acid in a neuronal damage model. Overall, these results pave the way for the further in-depth analysis of the neuroprotection of nitrone 5 in in vitro and in vivo models of stroke and possibly other neurodegenerative diseases in which oxidative stress is identified as a critical player.

3.
Antioxidants (Basel) ; 11(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36009295

RESUMO

We report herein the synthesis and antioxidant profile of nine novel heterobisnitrones (hBNs) as new α-phenyl-tert-butylnitrone (PBN) analogues. The synthesized hBNs 1-9 were evaluated for their antioxidant activity using different in vitro techniques, while they were also tested as inhibitors of soybean LOX, as an indication of their anti-inflammatory effect. Nitrone hBN9 is the most potent antioxidant presenting higher anti-lipid peroxidation and hydroxyl radicals scavenging activities as well as higher lipoxygenase inhibition. In silico calculations reveal that hBN9 follows Lipinski's rule of five and that the molecule is able to penetrate theoretically the brain. All these results led us to propose hBN9 as a new potent antioxidant nitrone.

4.
J Med Chem ; 65(8): 6250-6260, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35403430

RESUMO

NLRP3 is involved in the pathophysiology of several inflammatory diseases. Therefore, there is high current interest in the clinical development of new NLRP3 inflammasome small inhibitors to treat these diseases. Novel N-sulfonylureas were obtained by the replacement of the hexahydroindacene moiety of the previously described NLRP3 inhibitor MCC950. These new derivatives show moderate to high potency in inhibiting IL-1ß release in vitro. The greatest effect was observed for compound 4b, which was similar to MCC950. Moreover, compound 4b was able to reduce caspase-1 activation, oligomerization of ASC, and therefore, IL-1ß processing. Additional in silico predictions confirmed the safety profile of compound 4b, and in vitro studies in AML12 hepatic cells confirmed the absence of toxicological effects. Finally, we evaluated in vivo anti-inflammatory properties of compound 4b, which showed a significant anti-inflammatory effect and reduced mechanical hyperalgesia at 3 and 10 mg/kg (i.p.) in an in vivo mouse model of gout.


Assuntos
Gota , Inflamassomos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Hiperalgesia , Interleucina-1beta , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR
5.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34577561

RESUMO

Cerebrovascular diseases such as ischemic stroke are known to exacerbate dementia caused by neurodegenerative pathologies such as Alzheimer's disease (AD). Besides, the increasing number of patients surviving stroke makes it necessary to treat the co-occurrence of these two diseases with a single and combined therapy. For the development of new dual therapeutic agents, eight hybrid quinolylnitrones have been designed and synthesized by the juxtaposition of selected pharmacophores from our most advanced lead-compounds for ischemic stroke and AD treatment. Biological analyses looking for efficient neuroprotective effects in suitable phenotypic assays led us to identify MC903 as a new small quinolylnitrone for the potential dual therapy of stroke and AD, showing strong neuroprotection on (i) primary cortical neurons under oxygen-glucose deprivation/normoglycemic reoxygenation as an experimental ischemia model; (ii), neuronal line cells treated with rotenone/oligomycin A, okadaic acid or ß-amyloid peptide Aß25-35, modeling toxic insults found among the effects of AD.

6.
RSC Med Chem ; 12(6): 1000-1004, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34223165

RESUMO

Sigma (σ) receptors represent attractive targets for the development of potential agents for the treatment of several disorders, including Alzheimer's disease and neuropathic pain. In the search for multitarget small molecules (MSMs) against such disorders, we have re-discovered chromenones as new affine σ1/σ2 ligands. 6-(4-(Piperidin-1-yl)butoxy)-4H-chromen-4-one (7), a previously identified MSM with potent dual-target activities against acetylcholinesterase and monoamine oxidase B, also exhibited σ1/σ2 affinity. 6-(3-(Azepan-1-yl)propoxy)-4H-chromen-4-one (20) showed a K i value for σ1 of 27.2 nM (selectivity (σ1/σ2) = 28), combining the desired σ1 receptor affinity with a dual inhibitory capacity against both acetyl- and butyrylcholinesterase. 6-((5-Morpholinopentyl)oxy)-4H-chromen-4-one (12) was almost equipotent to S1RA, an established σ1 receptor antagonist.

7.
Molecules ; 26(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672652

RESUMO

Herein, we report the neuroprotective and antioxidant activity of 1,1'-biphenyl nitrones (BPNs) 1-5 as α-phenyl-N-tert-butylnitrone analogues prepared from commercially available [1,1'-biphenyl]-4-carbaldehyde and [1,1'-biphenyl]-4,4'-dicarbaldehyde. The neuroprotection of BPNs1-5 has been measured against oligomycin A/rotenone and in an oxygen-glucose deprivation in vitro ischemia model in human neuroblastoma SH-SY5Y cells. Our results indicate that BPNs 1-5 have better neuroprotective and antioxidant properties than α-phenyl-N-tert-butylnitrone (PBN), and they are quite similar to N-acetyl-L-cysteine (NAC), which is a well-known antioxidant agent. Among the nitrones studied, homo-bis-nitrone BPHBN5, bearing two N-tert-Bu radicals at the nitrone motif, has the best neuroprotective capacity (EC50 = 13.16 ± 1.65 and 25.5 ± 3.93 µM, against the reduction in metabolic activity induced by respiratory chain blockers and oxygen-glucose deprivation in an in vitro ischemia model, respectively) as well as anti-necrotic, anti-apoptotic, and antioxidant activities (EC50 = 11.2 ± 3.94 µM), which were measured by its capacity to reduce superoxide production in human neuroblastoma SH-SY5Y cell cultures, followed by mononitrone BPMN3, with one N-Bn radical, and BPMN2, with only one N-tert-Bu substituent. The antioxidant activity of BPNs1-5 has also been analyzed for their capacity to scavenge hydroxyl free radicals (82% at 100 µM), lipoxygenase inhibition, and the inhibition of lipid peroxidation (68% at 100 µM). Results showed that although the number of nitrone groups improves the neuroprotection profile of these BPNs, the final effect is also dependent on the substitutent that is being incorporated. Thus, BPNs bearing N-tert-Bu and N-Bn groups show better neuroprotective and antioxidant properties than those substituted with Me. All these results led us to propose homo-bis-nitrone BPHBN5 as the most balanced and interesting nitrone based on its neuroprotective capacity in different neuronal models of oxidative stress and in vitro ischemia as well as its antioxidant activity.


Assuntos
Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Inibidores de Lipoxigenase/farmacologia , Lipoxigenase/metabolismo , Fármacos Neuroprotetores/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Óxidos N-Cíclicos/síntese química , Óxidos N-Cíclicos/química , Humanos , Radical Hidroxila/antagonistas & inibidores , Peroxidação de Lipídeos/efeitos dos fármacos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Células Tumorais Cultivadas
8.
Chem Rec ; 21(1): 162-174, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33169934

RESUMO

Herein we have reviewed our recent developments for the identification of new tacrine analogues for Alzheimer's disease (AD) therapy. Tacrine, the first cholinesterase inhibitor approved for AD treatment, did not stop the progression of AD, producing only some cognitive improvements, but exhibited secondary effects mainly due to its hepatotoxicity. Thus, the drug was withdrawn from the clinics administration. Since then, many publications have described non-hepatotoxic tacrines, and in addition, important efforts have been made to design multitarget tacrines by combining their cholinesterase inhibition profile with the modulation of other biological targets involved in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Tacrina/análogos & derivados , Tacrina/farmacologia , Acetilcolinesterase/metabolismo , Linhagem Celular Tumoral , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/metabolismo , Ligação Proteica , Tacrina/metabolismo
9.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114714

RESUMO

Herein we report the synthesis, antioxidant and neuroprotective power of homo-tris-nitrones (HTN) 1-3, designed on the hypothesis that the incorporation of a third nitrone motif into our previously identified homo-bis-nitrone 6 (HBN6) would result in an improved and stronger neuroprotection. The neuroprotection of HTNs1-3, measured against oligomycin A/rotenone, showed that HTN2 was the best neuroprotective agent at a lower dose (EC50 = 51.63 ± 4.32 µM), being similar in EC50 and maximal activity to α-phenyl-N-tert-butylnitrone (PBN) and less potent than any of HBNs 4-6. The results of neuroprotection in an in vitro oxygen glucose deprivation model showed that HTN2 was the most powerful (EC50 = 87.57 ± 3.87 µM), at lower dose, but 50-fold higher than its analogous HBN5, and ≈1.7-fold less potent than PBN. HTN3 had a very good antinecrotic (IC50 = 3.47 ± 0.57 µM), antiapoptotic, and antioxidant (EC50 = 6.77 ± 1.35 µM) profile, very similar to that of its analogous HBN6. In spite of these results, and still being attractive neuroprotective agents, HTNs 2 and 3 do not have better neuroprotective properties than HBN6, but clearly exceed that of PBN.


Assuntos
Antioxidantes/síntese química , Óxidos N-Cíclicos/química , Neurônios/citologia , Fármacos Neuroprotetores/síntese química , Óxidos de Nitrogênio/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/farmacologia , Oligomicinas/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Rotenona/efeitos adversos
10.
Sci Rep ; 10(1): 14150, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843666

RESUMO

We herein report the synthesis, antioxidant power and neuroprotective properties of nine homo-bis-nitrones HBNs 1-9 as alpha-phenyl-N-tert-butylnitrone (PBN) analogues for stroke therapy. In vitro neuroprotection studies of HBNs 1-9 against Oligomycin A/Rotenone and in an oxygen-glucose-deprivation model of ischemia in human neuroblastoma cell cultures, indicate that (1Z,1'Z)-1,1'-(1,3-phenylene)bis(N-benzylmethanimine oxide) (HBN6) is a potent neuroprotective agent that prevents the decrease in neuronal metabolic activity (EC50 = 1.24 ± 0.39 µM) as well as necrotic and apoptotic cell death. HBN6 shows strong hydroxyl radical scavenger power (81%), and capacity to decrease superoxide production in human neuroblastoma cell cultures (maximal activity = 95.8 ± 3.6%), values significantly superior to the neuroprotective and antioxidant properties of the parent PBN. The higher neuroprotective ability of HBN6 has been rationalized by means of Density Functional Theory calculations. Calculated physicochemical and ADME properties confirmed HBN6 as a hit-agent showing suitable drug-like properties. Finally, the contribution of HBN6 to brain damage prevention was confirmed in a permanent MCAO setting by assessing infarct volume outcome 48 h after stroke in drug administered experimental animals, which provides evidence of a significant reduction of the brain lesion size and strongly suggests that HBN6 is a potential neuroprotective agent against stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Óxidos N-Cíclicos/química , Sequestradores de Radicais Livres/uso terapêutico , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Óxidos de Nitrogênio/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Isquemia Encefálica/induzido quimicamente , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/farmacologia , Glucose/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Peroxidação de Lipídeos/efeitos dos fármacos , Inibidores de Lipoxigenase/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Neuroblastoma/patologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacologia , Óxidos de Nitrogênio/síntese química , Óxidos de Nitrogênio/farmacologia , Oligomicinas/toxicidade , Oxigênio/farmacologia , Rotenona/toxicidade
11.
Molecules ; 25(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668671

RESUMO

Alzheimer's disease (AD) is multifactorial disease characterized by the accumulation of abnormal extracellular deposits of amyloid-beta (Aß) peptide, and intracellular neurofibrillary tangles (NFTs), along with dramatic neuronal death and decreased levels of choline acetyltransferase. Given the limited therapeutic success of available drugs, it is urgent to explore all the opportunities available to combat this illness. Among them, the discovery of new heterocyclic scaffolds binding different receptors involved in AD should offer structural diversity and new therapeutic solutions. In this context, this work describes new triazolopyridopyrimidine easily prepared in good yields showing anticholinesterase inhibition and strong antioxidant power, particularly the most balanced: 6-amino-5-(4-methoxyphenyl)-2-phenyl-[1,2,4]triazolo[1',5':1,6] pyrido[2,3-d]pyrimidine-4-carbonitrile(3c) with IC50 equal to 1.32 µM against AChE and oxygen radical absorbance capacity (ORAC) value equal to 4.01 Trolox equivalents (TE); thus representing a new and very promising hit-triazolopyridopyrimidine for AD therapy.


Assuntos
Antioxidantes/síntese química , Inibidores da Colinesterase/síntese química , Quinoxalinas/síntese química , Doença de Alzheimer/tratamento farmacológico , Descoberta de Drogas , Humanos
12.
J Med Chem ; 62(24): 11416-11422, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31724859

RESUMO

New tritarget small molecules combining Ca2+ channels blockade, cholinesterase, and H3 receptor inhibition were obtained by multicomponent synthesis. Compound 3p has been identified as a very promising lead, showing good Ca2+ channels blockade activity (IC50 = 21 ± 1 µM), potent affinity against hH3R (Ki = 565 ± 62 nM), a moderate but selective hBuChE inhibition (IC50 = 7.83 ± 0.10 µM), strong antioxidant power (3.6 TE), and ability to restore cognitive impairment induced by lipopolysaccharide.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/farmacologia , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Receptores Histamínicos H3/química , Bibliotecas de Moléculas Pequenas/farmacologia , Vasodilatadores/farmacologia , Doença de Alzheimer/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/química , Inibidores da Colinesterase/química , Humanos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Camundongos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Fármacos Neuroprotetores/química , Bibliotecas de Moléculas Pequenas/química , Células Tumorais Cultivadas , Vasodilatadores/química
13.
Molecules ; 24(8)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999586

RESUMO

We report the synthesis and relevant pharmacological properties of the quinoxalinetacrine (QT) hybrid QT78 in a project targeted to identify new non-hepatotoxic tacrine derivatives for Alzheimer's disease therapy. We have found that QT78 is less toxic than tacrine at high concentrations (from 100 µM to 1 mM), less potent than tacrine as a ChE inhibitor, but shows selective BuChE inhibition (IC50 (hAChE) = 22.0 ± 1.3 µM; IC50 (hBuChE) = 6.79 ± 0.33 µM). Moreover, QT78 showed effective and strong neuroprotection against diverse toxic stimuli, such as rotenone plus oligomycin-A or okadaic acid, of biological significance for Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase , Tacrina , Doença de Alzheimer/enzimologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacocinética , Inibidores da Colinesterase/farmacologia , Células Hep G2 , Humanos , Tacrina/química , Tacrina/farmacocinética , Tacrina/farmacologia
14.
ACS Chem Neurosci ; 10(6): 2703-2706, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30943011

RESUMO

We describe here the preparation, neuroprotective analysis, and antioxidant capacity of 11 novel quinolylnitrones (QN). The neuroprotective analysis of QN1-11 in an oxygen-glucose deprivation model, in primary neuronal cultures, has been determined, allowing us to identify QN6 as a very potent neuroprotective agent, showing significant high value at 0.5 and 10 µM (86.2%), a result in good agreement with the observed strong hydroxyl radical scavenger of QN6.


Assuntos
Antioxidantes/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Humanos , Óxidos de Nitrogênio/farmacologia , Quinolinas/farmacologia
15.
Bioorg Chem ; 86: 445-451, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30771691

RESUMO

In this work six PBN-related indanonitrones 1-6 have been designed, synthesized, and their neuroprotection capacity tested in vitro, under OGD conditions, in SH-SY5Y human neuroblastoma cell cultures. As a result, we have identified indanonitrones 1, 3 and 4 (EC50 = 6.64 ±â€¯0.28 µM) as the most neuroprotective agents, and in particular, among them, indanonitrone 4 was also the most potent and balanced nitrone, showing antioxidant activity in three experiments [LOX (100 µM), APPH (51%), DPPH (36.5%)], being clearly more potent antioxidant agent than nitrone PBN. Consequently, we have identified (Z)-5-hydroxy-N-methyl-2,3-dihydro-1H-inden-1-imine oxide (4) as a hit-molecule for further investigation.


Assuntos
Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Indanos/farmacologia , Fármacos Neuroprotetores/farmacologia , Óxidos de Nitrogênio/farmacologia , Amidinas/antagonistas & inibidores , Amidinas/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Óxidos N-Cíclicos/química , Relação Dose-Resposta a Droga , Humanos , Indanos/síntese química , Indanos/química , Peroxidação de Lipídeos/efeitos dos fármacos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Óxidos de Nitrogênio/síntese química , Óxidos de Nitrogênio/química , Picratos/antagonistas & inibidores , Relação Estrutura-Atividade , Células Tumorais Cultivadas
16.
J Enzyme Inhib Med Chem ; 34(1): 479-489, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30712420

RESUMO

We describe herein the design, multicomponent synthesis and biological studies of new donepezil + chromone + melatonin hybrids as potential agents for Alzheimer's disease (AD) therapy. We have identified compound 14n as promising multitarget small molecule showing strong BuChE inhibition (IC50 = 11.90 ± 0.05 nM), moderate hAChE (IC50 = 1.73 ± 0.34 µM), hMAO A (IC50 = 2.78 ± 0.12 µM), and MAO B (IC50 = 21.29 ± 3.85 µM) inhibition, while keeping a strong antioxidant power (3.04 TE, ORAC test). Consequently, the results reported here support the development of new multitarget Donepezil + Chromone + Melatonin hybrids, such as compound 14n, as a potential drug for AD patients cure.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Cromonas/farmacologia , Donepezila/farmacologia , Melatonina/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Cromonas/química , Donepezila/química , Relação Dose-Resposta a Droga , Humanos , Melatonina/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA