Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 14(1): 54, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258600

RESUMO

The uncertainty regarding the effects and risks of nanomaterials on human health and the environment, and how they should be tested and assessed in the context of current regulations, is clearly holding back the full exploitation of the innovative potential of nanomaterials. To reduce this uncertainty, the European Union funded NANoREG and ProSafe projects (jointly referred to as N1P) have made a critical evaluation of methods to test and assess these risks in the context of the current registration, evaluation, authorisation and restriction of chemicals (REACH) regulation. Where essential methods were lacking, new ones have been developed. For several existing methods, adjustments have been proposed. Possible improvements to the REACH regulation have also been identified in these projects. The results of N1P have been translated into recommendations for (European) policy makers and regulators. Part of them have a "no regret" character, meaning that the proposed actions can be considered as necessary, feasible, effective and cost efficient. The recommended measures proposed for data quality and data management will create a more solid information basis for risk assessment of nanomaterials. When implemented, the recommendations regarding REACH will improve the application of REACH in both a legal and scientific sense. In practical terms however, the application of REACH will remain complex, time-consuming and costly. Besides that, adapting and specifying the information requirements and test methods in REACH for nanomaterials that are now on the market, will not solve the regulatory hurdles for next generation (nano) materials. To better align the dynamic character of developing new materials and the static character of regulations, it is recommended to explore possibilities of a more future proof approach for securing the safety of new (nano) materials.


Assuntos
Política Ambiental/legislação & jurisprudência , Regulamentação Governamental , Política de Saúde/legislação & jurisprudência , Nanoestruturas/efeitos adversos , Nanotecnologia/legislação & jurisprudência , Formulação de Políticas , Animais , Europa (Continente) , União Europeia , Humanos , Medição de Risco
2.
Regul Toxicol Pharmacol ; 80: 46-59, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27255696

RESUMO

In the current paper, a new strategy for risk assessment of nanomaterials is described, which builds upon previous project outcomes and is developed within the FP7 NANoREG project. NANoREG has the aim to develop, for the long term, new testing strategies adapted to a high number of nanomaterials where many factors can affect their environmental and health impact. In the proposed risk assessment strategy, approaches for (Quantitative) Structure Activity Relationships ((Q)SARs), grouping and read-across are integrated and expanded to guide the user how to prioritise those nanomaterial applications that may lead to high risks for human health. Furthermore, those aspects of exposure, kinetics and hazard assessment that are most likely to be influenced by the nanospecific properties of the material under assessment are identified. These aspects are summarised in six elements, which play a key role in the strategy: exposure potential, dissolution, nanomaterial transformation, accumulation, genotoxicity and immunotoxicity. With the current approach it is possible to identify those situations where the use of nanospecific grouping, read-across and (Q)SAR tools is likely to become feasible in the future, and to point towards the generation of the type of data that is needed for scientific justification, which may lead to regulatory acceptance of nanospecific applications of these tools.


Assuntos
Nanopartículas/toxicidade , Nanotecnologia/métodos , Testes de Toxicidade/métodos , Animais , Biotransformação , Carga Corporal (Radioterapia) , Qualidade de Produtos para o Consumidor , Humanos , Sistema Imunitário/efeitos dos fármacos , Estrutura Molecular , Testes de Mutagenicidade , Nanopartículas/química , Nanopartículas/metabolismo , Segurança do Paciente , Relação Quantitativa Estrutura-Atividade , Medição de Risco , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA