RESUMO
Soil erosion is the predominant agent affecting ecosystem services in the Ethiopian highlands. However, land management interventions aimed at controlling erosion in the region are hampered, mainly by a lack of watershed-based appropriate management practices and anticipated climate changes. This study examined the effectiveness of different land use changes and management scenarios in decreasing runoff and sediment loss under current and future climates in the drought-prone humid watershed of the Ethiopian highlands. We employed a modeling approach integrating observed data at watershed and plot scales with Soil and Water Assessment Tool. In the first step, we evaluated the impact of land use changes between 2006 and 2017 on runoff and sediment loss. Then, we developed five land use and management scenarios based on watershed land capabilities and selected land management practices. Model parameters were modified based on runoff and sediment loss results obtained from experimental plots of biophysical and agronomical land management practices in the watershed. The runoff and sediment loss were simulated under current (2014-2019) and future climates (the 2050s) for each land use and management scenario. Results revealed that land use changes (mainly an increase in Acacia decurrens plantations by 206%) alone between 2006 and 2017 reduced runoff by 31% and sediment loss by 45%. Under the current climate, the five land use and management scenarios reduced runoff by 71-95% and sediment loss by 75-96% compared to the baseline scenario. Under the future climate (2050s), these scenarios decreased runoff by 48-90% and sediment loss by 54-91%. However, their effectiveness was slightly decreased (5-23%) as a result of increases in rainfall (10-46%) and mean temperature (1.7-1.9 °C) in the 2050s. The scenario of improving vegetation cover through forage production and plantations in appropriate areas plus best land management practices was the most effective and climate-resilient of the five scenarios. This study suggests that evaluating the impact of land use and management practices under future climate change shows promise for guiding effective and sustainable interventions to adapt to climate change.
Assuntos
Ecossistema , Rios , Solo , Agricultura , Movimentos da ÁguaRESUMO
In terms of land use and climate, the world is changing at an unprecedented rate and these changes have a significant influence on our water resources. This study was conducted to examine the individual and combined potential impacts of land use and climate change on the water balance of the Baro basin in Ethiopia for the baseline period (1985-2002) and near-future period (2023-2040) using the Soil and Water Assessment Tool (SWAT). The plausible land use scenarios considering current (CUR), business as usual (BAU), and further expansion of altitudinal forest and watershed management practices (CON), as well as climate change scenarios from regional climate model outputs (RCMs) under two representative concentration pathways (RCP4.5 and RCP8.5) for the 2023-2040 time frame, were used as inputs to the models. The monthly calibrated and validated SWAT model produced an acceptable result, which was then used for water balance simulations. Findings show that forest decreased from 54.5% to 48.9% and 41.2% while agricultural land increased from 21.8% to 29.7% and 39.8% under the CUR and BAU land use change scenarios, respectively. The results from the ensemble mean showed an increase in maximum and minimum temperatures and a decrease in rainfall under the RCP4.5 and RCP8.5 climate change scenarios, which in turn resulted in an increase in evapotranspiration (ET) and a decrease in water availability. Climate change outweighed the impact of land-use change, thus indicating an increase in annual ET by up to 12% and a decrease of 42% in surface runoff (SURQ) under the RCP8.5 scenario. The BAU land use scenario projection triggers a respective increase of 18% in annual SURQ and reduction of ET by 2%. However, under the CON land use scenario, SURQ decreased by 24%. The study concluded that future land use and climate change will further challenge the basin's water supply capacity to meet the increased water demand. Understanding the changes in the basin's water balance is critical for mitigation and adaptation options. As a result, this study proposes restoration efforts and climate-resilient water management strategies that can increase the resilience of the river basin.
RESUMO
Evaluating runoff and sediment responses to human activities and climate variability is crucial for prioritizing erosion hotspots and implementing appropriate land management interventions. This study evaluated the separate and combined impacts of soil and water conservation (SWC) practices, land use/land cover, and climate variability, on runoff and sediment yield (SY) using two approaches in drought-prone watersheds of northwestern Ethiopia. In the first (paired watershed) approach, runoff and SY outputs of Kecha (treated) and Laguna (untreated) watersheds were compared. In the second approach, we compared data before and after the implementation of SWC practices in the Kecha watershed. The Soil and Water Assessment Tool (SWAT) model was adopted for both untreated and treated watersheds and used to evaluate runoff and SY responses in the two approaches. Paired watershed approach results revealed that the SWC practices reduced the surface runoff in Kecha by about 28-36% and SY by about 51-68% as compared to those in Laguna. Similarly, compared with the baseline data at Kecha, the SWC practices reduced the surface runoff and SY by about 40% and 43%, respectively, corresponding to about 65-78% of the total changes brought by changes in land use/land cover and climate variability. Hence, combining the two approaches helped reasonably estimate the reduction of surface runoff and SY due to SWC practices by about 28-40% and about 43-68%, respectively, implying that SWC practices had a considerably greater effect on SY than surface runoff. The study further revealed that the untreated Laguna watershed, where >86% of the total area is categorized as the very high soil erosion severity class, should be an immediate conservation priority. The findings of this study will be vital to devise future alternative land management scenarios in these watersheds and similar agro-ecological areas elsewhere.
RESUMO
The Hawizeh marsh, a unique wetland which is part of the Mesopotamian marshes, is recognized as a wetland of international importance. The marsh has been shrinking and there has been little research into its degradation. This study aims to reconstruct historical water regimes in the contributing basins (Tigris and Karkheh river Basins, TKRB) to investigate factors that have affected the wellbeing of the marsh. The Soil and Water Assessment Tool (SWAT) was used for this study. The model was calibrated and validated using nine river gauging stations. Results indicated that inflows to the marsh decreased by 65% and 80% in the '90s and 2000s, respectively, compared to the '80s. The reductions in streamflow were caused by decrease in precipitation and water abstraction. The annual precipitation decreased by 14% and 38% in the '90s and 2000s, respectively, compared to the '80s. Highest water abstraction was seen in Karkheh dam which caused a reduction of 45% in the annual streamflows. Average annual evaporative losses from Tharthar lake (2700km2) were very high (2260hm3 [cubic hectometer]). Although the Hawizeh marsh has been shrinking for the last three decades, recent satellite images (2013) have shown that the marsh has been reviving, mainly due to increased precipitation from 2011 to 2013. The revival of the marsh is promising; however, if the planned dams on TKRB are implemented, the future of the marsh remains uncertain. The sustainability of the Hawizeh marsh will require integrated water resources management among the riparian countries to rehabilitate and maintain this unique wetland.
RESUMO
Water harvesting systems have improved productivity in various regions in sub-Saharan Africa. Similarly, they can help retain water in landscapes, build resilience against droughts and dry spells, and thereby contribute to sustainable agricultural intensification. However, there is no strong empirical evidence that shows the effects of intensification of water harvesting on upstream-downstream social-ecological systems at a landscape scale. In this paper we develop a decision support system (DSS) for locating and sizing water harvesting ponds in a hydrological model, which enables assessments of water harvesting intensification on upstream-downstream ecosystem services in meso-scale watersheds. The DSS was used with the Soil and Water Assessment Tool (SWAT) for a case-study area located in the Lake Tana basin, Ethiopia. We found that supplementary irrigation in combination with nutrient application increased simulated teff (Eragrostis tef, staple crop in Ethiopia) production up to three times, compared to the current practice. Moreover, after supplemental irrigation of teff, the excess water was used for dry season onion production of 7.66 t/ha (median). Water harvesting, therefore, can play an important role in increasing local- to regional-scale food security through increased and more stable food production and generation of extra income from the sale of cash crops. The annual total irrigation water consumption was ~4%-30% of the annual water yield from the entire watershed. In general, water harvesting resulted in a reduction in peak flows and an increase in low flows. Water harvesting substantially reduced sediment yield leaving the watershed. The beneficiaries of water harvesting ponds may benefit from increases in agricultural production. The downstream social-ecological systems may benefit from reduced food prices, reduced flooding damages, and reduced sediment influxes, as well as enhancements in low flows and water quality. The benefits of water harvesting warrant economic feasibility studies and detailed analyses of its ecological impacts.
RESUMO
Climate change is likely to have severe effects on water availability in Ethiopia. The aim of the present study was to assess the impact of climate change on the Gilgel Abay River, Upper Blue Nile Basin. The Statistical Downscaling Tool (SDSM) was used to downscale the HadCM3 (Hadley centre Climate Model 3) Global Circulation Model (GCM) scenario data into finer scale resolution. The Soil and Water Assessment Tool (SWAT) was set up, calibrated, and validated. SDSM downscaled climate outputs were used as an input to the SWAT model. The climate projection analysis was done by dividing the period 2010-2100 into three time windows with each 30 years of data. The period 1990-2001 was taken as the baseline period against which comparison was made. Results showed that annual mean precipitation may decrease in the first 30-year period but increase in the following two 30-year periods. The decrease in mean monthly precipitation may be as much as about -30% during 2010-2040 but the increase may be more than +30% in 2070-2100. The impact of climate change may cause a decrease in mean monthly flow volume between -40% to -50% during 2010-2040 but may increase by more than the double during 2070-2100. Climate change appears to have negligible effect on low flow conditions of the river. Seasonal mean flow volume, however, may increase by more than the double and +30% to +40% for the Belg (small rainy season) and Kiremit (main rainy season) periods, respectively. Overall, it appears that climate change will result in an annual increase in flow volume for the Gilgel Abay River. The increase in flow is likely to have considerable importance for local small scale irrigation activities. Moreover, it will help harnessing a significant amount of water for ongoing dam projects in the Gilgel Abay River Basin.