RESUMO
Designing hybrid transition metal phosphosulfide electrocatalysts is critical for the hydrogen evolution reaction (HER). We propose a novel approach by designing a hierarchical structure of cobalt phosphide (CoP) and nickel phosphide (Ni8P3) nanoparticles topotactically developed on nickel sulfide (Ni3S2) nanorods (CoNiP/NiS) via a sulfuration-phosphorization strategy using conductive 3D nickel foam. Hierarchical heterostructured nanorods were achieved without the need for template removal steps or the assistance of surfactants. This not only simplifies the process but also improves the exposure of active sites for catalytic purposes. Furthermore, the theoretical calculation results revealed that the high H* adsorption-free energy for CoP and Ni8P3 phases significantly decreases upon coupling with Ni3S2, which indicates that the interfacial electronic interaction synergistically modulates both CoP and Ni8P3 (CoNiP) at the coupled interfaces and facilitates the adsorption and desorption of H* intermediates during the HER process. The resulting electrode exhibits excellent performance in the HER catalytic process and shows great performance for further exploration in the urea oxidation reaction (UOR). Our work provides a stepping stone toward rational topotactic transformation of active materials on porous substrates, using electronic structure regulation and heterointerfaces to produce promising electrocatalysts for sustainable, large-scale hydrogen production from water electrolysis.
RESUMO
Electrochemical approaches for generating hydrogen from water splitting can be more promising if the challenges in the anodic oxygen evolution reaction (OER) can be harnessed. The interface heterostructure materials offer strong electronic coupling and appropriate charge transport at the interface regions, promoting accessible active sites to prompt kinetics and optimize the adsorption-desorption of active species. Herein, we have designed an efficient multi-interface-engineered Ni3Fe1 LDH/Ni3S2/TW heterostructure on in situ generated titanate web layers from the titanium foam. The synergistic effects of the multi-interface heterostructure caused the exposure of rich interfacial electronic coupling, fast reaction kinetics, and enhanced accessible site activity and site populations. The as-prepared electrocatalyst demonstrates outstanding OER activity, demanding a low overpotential of 220 mV at a high current density of 100 mA cm-2. Similarly, the designed Ni3Fe1 LDH/Ni3S2/TW electrocatalyst exhibits a low Tafel slope of 43.2 mV dec-1 and excellent stability for 100 h of operation, suggesting rapid kinetics and good structural stability. Also, the electrocatalyst shows a low overpotential of 260 mV at 100 mA cm-2 for HER activity. Moreover, the integrated electrocatalyst exhibits an incredible OER activity in simulated seawater with an overpotential of 370 mV at 100 mA cm-2 and stability for 100 h of operation, indicating good OER selectivity. This work might benefit further fabricating effective and stable self-sustained electrocatalysts for water splitting in large-scale applications.
RESUMO
Currently, hydrogen peroxide (H2O2) manufacturing involves an energy-intensive anthraquinone technique that demands expensive solvent extraction and a multistep process with substantial energy consumption. In this work, we synthesized Pd-N4-CO, Pd-S4-NCO, and Pd-N2O2-C single-atom catalysts via an in situ synthesis approach involving heteroatom-rich ligands and activated carbon under mild reaction conditions. It reveals that palladium atoms interact strongly with heteroatom-rich ligands, which provide well-defined and uniform active sites for oxygen (O2) electrochemically reduced to hydrogen peroxide. Interestingly, the Pd-N4-CO electrocatalyst shows excellent performance for the electrocatalytic reduction of O2 to H2O2 via a two-electron transfer process in a base electrolyte, exhibiting a negligible amount of onset overpotential and >95% selectivity within a wide range of applied potentials. The electrocatalysts based on the activity and selectivity toward 2e- ORR follow the order Pd-N4-CO > Pd-N2O2-C > Pd-S4-NCO in agreement with the pull-push mechanism, which is the Pd center strongly coordinated with high electronegativity donor atoms (N and O atoms) and weakly coordinated with the intermediate *OOH to excellent selectivity and sustainable production of H2O2. According to density functional theory, Pd-N4 is the active site for selectivity toward H2O2 generation. This work provides an emerging technique for designing high-performance H2O2 electrosynthesis catalysts and the rational integration of several active sites for green and sustainable chemical synthesis via electrochemical processes.