Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1868(9): 130673, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029539

RESUMO

BACKGROUND: Biomolecular condensation via liquid-liquid phase separation (LLPS) is crucial for orchestrating cellular activities temporospatially. Although the rheological heterogeneity of biocondensates and the structural dynamics of their constituents carry critical functional information, methods to quantitatively study biocondensates are lacking. Single-molecule fluorescence research can offer insights into biocondensation mechanisms. Unfortunately, as dense condensates tend to sink inside their dilute aqueous surroundings, studying their properties via methods relying on Brownian diffusion may fail. METHODS: We take a first step towards single-molecule research on condensates of Tau protein under flow in a microfluidic channel of an in-house developed microfluidic chip. Fluorescence correlation spectroscopy (FCS), a well-known technique to collect molecular characteristics within a sample, was employed with a newly commercialised technology, where FCS is performed on an array detector (AD-FCS), providing detailed diffusion and flow information. RESULTS: The AD-FCS technology allowed characterising our microfluidic chip, revealing 3D flow profiles. Subsequently, AD-FCS allowed mapping the flow of Tau condensates while measuring their burst durations through the stationary laser. Lastly, AD-FCS allowed obtaining flow velocity and burst duration data, the latter of which was used to estimate the condensate size distribution within LLPS samples. CONCLUSION: Studying biocondensates under flow through AD-FCS is promising for single-molecule experiments. In addition, AD-FCS shows its ability to estimate the size distribution in condensate samples in a convenient manner, prompting a new way of investigating biocondensate phase diagrams. GENERAL SIGNIFICANCE: We show that AD-FCS is a valuable tool for advancing research on understanding and characterising LLPS properties of biocondensates.


Assuntos
Espectrometria de Fluorescência , Proteínas tau , Espectrometria de Fluorescência/métodos , Proteínas tau/química , Proteínas tau/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Dispositivos Lab-On-A-Chip , Difusão , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA