Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709680

RESUMO

Brassinosteroids (BR) and gibberellins (GA) regulate plant height and leaf angle in maize (Zea mays). Mutants with defects in BR or GA biosynthesis or signaling identify components of these pathways and enhance our knowledge about plant growth and development. In this study, we characterized three recessive mutant alleles of GRAS transcription factor 42 (gras42) in maize, a GRAS transcription factor gene orthologous to the DWARF AND LOW TILLERING (DLT) gene of rice (Oryza sativa). These maize mutants exhibited semi-dwarf stature, shorter and wider leaves, and more upright leaf angle. Transcriptome analysis revealed a role for GRAS42 as a determinant of BR signaling. Analysis of the expression consequences from loss of GRAS42 in the gras42-mu1021149 mutant indicated a weak loss of BR signaling in the mutant, consistent with its previously demonstrated role in BR signaling in rice. Loss of BR signaling was also evident by the enhancement of weak BR biosynthetic mutant alleles in double mutants of nana plant1-1 and gras42-mu1021149. The gras42-mu1021149 mutant had little effect on GA-regulated gene expression, suggesting that GRAS42 is not a regulator of core GA signaling genes in maize. Single cell expression data identified gras42 expressed among cells in the G2/M phase of the cell cycle consistent with its previously demonstrated role in cell cycle gene expression in Arabidopsis (Arabidopsis thaliana). Cis-acting natural variation controlling GRAS42 transcript accumulation was identified by expression genome-wide association study (eGWAS) in maize. Our results demonstrate a conserved role for GRAS42/SCARECROW-LIKE 28 (SCL28)/DLT in BR signaling, clarify the role of this gene in GA signaling, and suggest mechanisms of tillering and leaf angle control by BR.

2.
Proc Natl Acad Sci U S A ; 121(6): e2317461121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289961

RESUMO

Identifying the genetic basis of local adaptation and fitness trade-offs across environments is a central goal of evolutionary biology. Cold acclimation is an adaptive plastic response for surviving seasonal freezing, and costs of acclimation may be a general mechanism for fitness trade-offs across environments in temperate zone species. Starting with locally adapted ecotypes of Arabidopsis thaliana from Italy and Sweden, we examined the fitness consequences of a naturally occurring functional polymorphism in CBF2. This gene encodes a transcription factor that is a major regulator of cold-acclimated freezing tolerance and resides within a locus responsible for a genetic trade-off for long-term mean fitness. We estimated the consequences of alternate genotypes of CBF2 on 5-y mean fitness and fitness components at the native field sites by comparing near-isogenic lines with alternate genotypes of CBF2 to their genetic background ecotypes. The effects of CBF2 were validated at the nucleotide level using gene-edited lines in the native genetic backgrounds grown in simulated parental environments. The foreign CBF2 genotype in the local genetic background reduced long-term mean fitness in Sweden by more than 10%, primarily via effects on survival. In Italy, fitness was reduced by more than 20%, primarily via effects on fecundity. At both sites, the effects were temporally variable and much stronger in some years. The gene-edited lines confirmed that CBF2 encodes the causal variant underlying this genetic trade-off. Additionally, we demonstrated a substantial fitness cost of cold acclimation, which has broad implications for potential maladaptive responses to climate change.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Mutação , Aclimatação/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição/genética , Temperatura Baixa , Aptidão Genética
3.
Science ; 382(6674): eadg8940, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033071

RESUMO

The origins of maize were the topic of vigorous debate for nearly a century, but neither the current genetic model nor earlier archaeological models account for the totality of available data, and recent work has highlighted the potential contribution of a wild relative, Zea mays ssp. mexicana. Our population genetic analysis reveals that the origin of modern maize can be traced to an admixture between ancient maize and Zea mays ssp. mexicana in the highlands of Mexico some 4000 years after domestication began. We show that variation in admixture is a key component of maize diversity, both at individual loci and for additive genetic variation underlying agronomic traits. Our results clarify the origin of modern maize and raise new questions about the anthropogenic mechanisms underlying dispersal throughout the Americas.


Assuntos
Produtos Agrícolas , Domesticação , Hibridização Genética , Zea mays , México , Fenótipo , Zea mays/genética , Variação Genética , Produtos Agrícolas/genética
4.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37548268

RESUMO

Teopod1 (Tp1), Teopod2 (Tp2), and Early phase change (Epc) have profound effects on the timing of vegetative phase change in maize. Gain-of-function mutations in Tp1 and Tp2 delay all known phase-specific vegetative traits, whereas loss-of-function mutations in Epc accelerate vegetative phase change and cause shoot abortion in some genetic backgrounds. Here, we show that Tp1 and Tp2 likely represent cis-acting mutations that cause the overexpression of Zma-miR156j and Zma-miR156h, respectively. Epc is the maize ortholog of HASTY, an Arabidopsis gene that stabilizes miRNAs and promotes their intercellular movement. Consistent with its pleiotropic phenotype and epistatic interaction with Tp1 and Tp2, epc reduces the levels of miR156 and several other miRNAs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Zea mays/genética , Mutação , Arabidopsis/genética , Genes de Plantas , MicroRNAs/genética , Regulação da Expressão Gênica de Plantas , Carioferinas/genética , Proteínas de Arabidopsis/genética
5.
Plant Physiol ; 192(2): 1016-1027, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36905371

RESUMO

The Arabidopsis (Arabidopsis thaliana) BYPASS1 (BPS1) gene encodes a protein with no functionally characterized domains, and loss-of-function mutants (e.g. bps1-2 in Col-0) present a severe growth arrest phenotype that is evoked by a root-derived graft-transmissible small molecule that we call dalekin. The root-to-shoot nature of dalekin signaling suggests it could be an endogenous signaling molecule. Here, we report a natural variant screen that allowed us to identify enhancers and suppressors of the bps1-2 mutant phenotype (in Col-0). We identified a strong semi-dominant suppressor in the Apost-1 accession that largely restored shoot development in bps1 and yet continued to overproduce dalekin. Using bulked segregant analysis and allele-specific transgenic complementation, we showed that the suppressor is the Apost-1 allele of a BPS1 paralog, BYPASS2 (BPS2). BPS2 is one of four members of the BPS gene family in Arabidopsis, and phylogenetic analysis demonstrated that the BPS family is conserved in land plants and the four Arabidopsis paralogs are retained duplicates from whole genome duplications. The strong conservation of BPS1 and paralogous proteins throughout land plants, and the similar functions of paralogs in Arabidopsis, suggests that dalekin signaling might be retained across land plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Alelos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenótipo , Filogenia , Raízes de Plantas/metabolismo
6.
Plant J ; 112(2): 493-517, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36050832

RESUMO

The plant hormone gibberellin (GA) impacts plant growth and development differently depending on the developmental context. In the maize (Zea mays) tassel, application of GA alters floral development, resulting in the persistence of pistils. GA signaling is achieved by the GA-dependent turnover of DELLA domain transcription factors, encoded by dwarf8 (d8) and dwarf9 (d9) in maize. The D8-Mpl and D9-1 alleles disrupt GA signaling, resulting in short plants and normal tassel floret development in the presence of excess GA. However, D9-1 mutants are unable to block GA-induced pistil development. Gene expression in developing tassels of D8-Mpl and D9-1 mutants and their wild-type siblings was determined upon excess GA3 and mock treatments. Using GA-sensitive transcripts as reporters of GA signaling, we identified a weak loss of repression under mock conditions in both mutants, with the effect in D9-1 being greater. D9-1 was also less able to repress GA signaling in the presence of excess GA3 . We treated a diverse set of maize inbred lines with excess GA3 and measured the phenotypic consequences on multiple aspects of development (e.g., height and pistil persistence in tassel florets). Genotype affected all GA-regulated phenotypes but there was no correlation between any of the GA-affected phenotypes, indicating that the complexity of the relationship between GA and development extends beyond the two-gene epistasis previously demonstrated for GA and brassinosteroid biosynthetic mutants.


Assuntos
Proteínas de Arabidopsis , Giberelinas , Giberelinas/metabolismo , Zea mays/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Inflorescência/metabolismo , Brassinosteroides/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Arabidopsis/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(40): e2212199119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161933

RESUMO

Plants typically orient their organs with respect to the Earth's gravity field by a dynamic process called gravitropism. To discover conserved genetic elements affecting seedling root gravitropism, we measured the process in a set of Zea mays (maize) recombinant inbred lines with machine vision and compared the results with those obtained in a similar study of Arabidopsis thaliana. Each of the several quantitative trait loci that we mapped in both species spanned many hundreds of genes, too many to test individually for causality. We reasoned that orthologous genes may be responsible for natural variation in monocot and dicot root gravitropism. If so, pairs of orthologous genes affecting gravitropism may be present within the maize and Arabidopsis QTL intervals. A reciprocal comparison of sequences within the QTL intervals identified seven pairs of such one-to-one orthologs. Analysis of knockout mutants demonstrated a role in gravitropism for four of the seven: CCT2 functions in phosphatidylcholine biosynthesis, ATG5 functions in membrane remodeling during autophagy, UGP2 produces the substrate for cellulose and callose polymer extension, and FAMA is a transcription factor. Automated phenotyping enabled this discovery of four naturally varying components of a conserved process (gravitropism) by making it feasible to conduct the same large-scale experiment in two species.


Assuntos
Arabidopsis , Gravitropismo , Arabidopsis/genética , Celulose , Gravitropismo/genética , Fosfatidilcolinas , Raízes de Plantas/genética , Polímeros , Locos de Características Quantitativas , Fatores de Transcrição/genética , Zea mays/genética
8.
Plant Direct ; 5(6): e00326, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34136747

RESUMO

Auxin is a hormone that is required for hypocotyl elongation during seedling development. In response to auxin, rapid changes in transcript and protein abundance occur in hypocotyls, and some auxin responsive gene expression is linked to hypocotyl growth. To functionally validate proteomic studies, a reverse genetics screen was performed on mutants in auxin-regulated proteins to identify novel regulators of plant growth. This uncovered a long hypocotyl mutant, which we called slim shady, in an annotated insertion line in IMMUNOREGULATORY RNA-BINDING PROTEIN (IRR). Overexpression of the IRR gene failed to rescue the slim shady phenotype and characterization of a second T-DNA allele of IRR found that it had a wild-type (WT) hypocotyl length. The slim shady mutant has an elevated expression of numerous genes associated with the brassinosteroid-auxin-phytochrome (BAP) regulatory module compared to WT, including transcription factors that regulate brassinosteroid, auxin, and phytochrome pathways. Additionally, slim shady seedlings fail to exhibit a strong transcriptional response to auxin. Using whole genome sequence data and genetic complementation analysis with SALK_015201C, we determined that a novel single nucleotide polymorphism in PHYTOCHROME B was responsible for the slim shady phenotype. This is predicted to induce a frameshift and premature stop codon at leucine 1125, within the histidine kinase-related domain of the carboxy terminus of PHYB, which is required for phytochrome signaling and function. Genetic complementation analyses with phyb-9 confirmed that slim shady is a mutant allele of PHYB. This study advances our understanding of the molecular mechanisms in seedling development, by furthering our understanding of how light signaling is linked to auxin-dependent cell elongation. Furthermore, this study highlights the importance of confirming the genetic identity of research material before attributing phenotypes to known mutations sourced from T-DNA stocks.

9.
Curr Opin Plant Biol ; 59: 101985, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33418403

RESUMO

Optimization of crop production requires root systems to function in water uptake, nutrient use, and anchorage. In maize, two types of nodal roots-subterranean crown and aerial brace roots function in anchorage and water uptake and preferentially express multiple water and nutrient transporters. Brace root development shares genetic control with juvenile-to-adult phase change and flowering time. We present a comprehensive list of the genes known to alter brace roots and explore these as candidates for QTL studies in maize and sorghum. Brace root development and function may be conserved in other members of Poaceae, however research is limited. This work highlights the critical knowledge gap of aerial nodal root development and function and suggests new focus areas for breeding resilient crops.


Assuntos
Raízes de Plantas , Poaceae , Agricultura , Melhoramento Vegetal , Zea mays
10.
G3 (Bethesda) ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36351283

RESUMO

The nuclear pore complex (NPC) regulates the movement of macromolecules between the nucleus and cytoplasm. Dysfunction of many components of the NPC results in human genetic diseases, including triple A syndrome (AAAS) as a result of mutations in ALADIN. Here, we report a nonsense mutation in the maize ortholog, aladin1 (ali1-1), at the orthologous amino acid residue of an AAAS allele from humans, alters plant stature, tassel architecture, and asymmetric divisions of subsidiary mother cells (SMCs). Crosses with the stronger nonsense allele ali1-2 identified complex allele interactions for plant height and aberrant SMC division. RNA-seq analysis of the ali1-1 mutant identified compensatory transcript accumulation for other NPC components as well as gene expression consequences consistent with conservation of ALADIN1 functions between humans and maize. These findings demonstrate that ALADIN1 is necessary for normal plant development, shoot architecture, and asymmetric cell division in maize.


Assuntos
Poro Nuclear , Zea mays , Humanos , Zea mays/fisiologia , Poro Nuclear/genética , Poro Nuclear/metabolismo , Divisão Celular Assimétrica , Divisão Celular/genética , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Plant Direct ; 4(11): e00284, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33204937

RESUMO

Mechanical failure, known as lodging, negatively impacts yield and grain quality in crops. Limiting crop loss from lodging requires an understanding of the plant traits that contribute to lodging-resistance. In maize, specialized aerial brace roots are reported to reduce root lodging. However, their direct contribution to plant biomechanics has not been measured. In this manuscript, we use a non-destructive field-based mechanical test on plants before and after the removal of brace roots. This precisely determines the contribution of brace roots to establish a rigid base (i.e. stalk anchorage) that limits plant deflection in maize. These measurements demonstrate that the more brace root whorls that contact the soil, the greater their overall contribution to anchorage, but that the contributions of each whorl to anchorage were not equal. Previous studies demonstrated that the number of nodes that produce brace roots is correlated with flowering time in maize. To determine if flowering time selection alters the brace root contribution to anchorage, a subset of the Hallauer's Tusón tropical population was analyzed. Despite significant variation in flowering time and anchorage, selection neither altered the number of brace root whorls in the soil nor the overall contribution of brace roots to anchorage. These results demonstrate that brace roots provide a rigid base in maize and that the contribution of brace roots to anchorage was not linearly related to flowering time.

12.
Plant Physiol ; 184(1): 300-315, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641472

RESUMO

Chlorophyll is a tetrapyrrole metabolite essential for photosynthesis in plants. The first committed step of chlorophyll biosynthesis is catalyzed by a multimeric enzyme, magnesium chelatase, the subunit I of which is encoded by the oil yellow1 (oy1) gene in maize (Zea mays). A range of chlorophyll contents and net CO2 assimilation rates can be achieved in maize by combining a semidominant mutant allele of oy1 (Oy1-N1989) and a cis-regulatory modifier named very oil yellow1 (vey1) that varies between different inbred lines. We previously demonstrated that these allelic interactions can delay reproductive maturity. In this study, we demonstrate that multiple gross morphological traits respond to a reduction in chlorophyll. We found that stalk width, number of lateral branches (tillers), and branching of the inflorescence decline with a decrease in chlorophyll level. Chlorophyll deficit suppressed tillering in multiple maize mutants, including teosinte branched1, Tillering1, and grassy tillers1 In contrast to these traits, plant height showed a nonlinear response to chlorophyll levels. Weak suppression of Oy1-N1989 by vey1 B73 resulted in a significant increase in mutant plant height. By contrast, enhancement of the severity of the Oy1-N1989 phenotype by the vey1 Mo17 allele resulted in reduced plant height. We demonstrate that the effects of reduced chlorophyll contents on plant growth and development are complex and depend on the trait being measured. We propose that the lack of chlorophyll exerts growth control via energy balance sensing, which is upstream of the known genetic networks for branching and architecture.


Assuntos
Clorofila/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Monóxido de Carbono/metabolismo , Inflorescência/metabolismo , Liases/metabolismo , Proteínas de Plantas/genética , Zea mays/genética
13.
G3 (Bethesda) ; 10(2): 797-810, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31822516

RESUMO

We previously demonstrated that maize (Zea mays) locus very oil yellow1 (vey1) encodes a putative cis-regulatory expression polymorphism at the magnesium chelatase subunit I gene (aka oil yellow1) that strongly modifies the chlorophyll content of the semi-dominant Oy1-N1989 mutants. The vey1 allele of Mo17 inbred line reduces chlorophyll content in the mutants leading to reduced photosynthetic output. Oy1-N1989 mutants in B73 reached reproductive maturity four days later than wild-type siblings. Enhancement of Oy1-N1989 by the Mo17 allele at the vey1 QTL delayed maturity further, resulting in detection of a flowering time QTL in two bi-parental mapping populations crossed to Oy1-N1989 The near isogenic lines of B73 harboring the vey1 allele from Mo17 delayed flowering of Oy1-N1989 mutants by twelve days. Just as previously observed for chlorophyll content, vey1 had no effect on reproductive maturity in the absence of the Oy1-N1989 allele. Loss of chlorophyll biosynthesis in Oy1-N1989 mutants and enhancement by vey1 reduced CO2 assimilation. We attempted to separate the effects of photosynthesis on the induction of flowering from a possible impact of chlorophyll metabolites and retrograde signaling by manually reducing leaf area. Removal of leaves, independent of the Oy1-N1989 mutant, delayed flowering but surprisingly reduced chlorophyll contents of emerging leaves. Thus, defoliation did not completely separate the identity of the signal(s) that regulates flowering time from changes in chlorophyll content in the foliage. These findings illustrate the necessity to explore the linkage between metabolism and the mechanisms that connect it to flowering time regulation.


Assuntos
Variação Genética , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Característica Quantitativa Herdável , Reprodução/genética , Zea mays/genética , Alelos , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Ligação Genética , Fenótipo , Fotossíntese , Zea mays/metabolismo
14.
Plant Direct ; 3(5): e00139, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31245778

RESUMO

The integrated responses of biological systems to genetic and environmental variation result in substantial covariance in multiple phenotypes. The resultant pleiotropy, environmental effects, and genotype-by-environmental interactions (GxE) are foundational to our understanding of biology and genetics. Yet, the treatment of correlated characters, and the identification of the genes encoding functions that generate this covariance, has lagged. As a test case for analyzing the genetic basis underlying multiple correlated traits, we analyzed maize kernel ionomes from Intermated B73 x Mo17 (IBM) recombinant inbred populations grown in 10 environments. Plants obtain elements from the soil through genetic and biochemical pathways responsive to physiological state and environment. Most perturbations affect multiple elements which leads the ionome, the full complement of mineral nutrients in an organism, to vary as an integrated network rather than a set of distinct single elements. We compared quantitative trait loci (QTL) determining single-element variation to QTL that predict variation in principal components (PCs) of multiple-element covariance. Single-element and multivariate approaches detected partially overlapping sets of loci. QTL influencing trait covariation were detected at loci that were not found by mapping single-element traits. Moreover, this approach permitted testing environmental components of trait covariance, and identified multi-element traits that were determined by both genetic and environmental factors as well as genotype-by-environment interactions. Growth environment had a profound effect on the elemental profiles and multi-element phenotypes were significantly correlated with specific environmental variables.

15.
G3 (Bethesda) ; 9(2): 375-390, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30518539

RESUMO

Forward genetics determines the function of genes underlying trait variation by identifying the change in DNA responsible for changes in phenotype. Detecting phenotypically-relevant variation outside protein coding sequences and distinguishing this from neutral variants is not trivial; partly because the mechanisms by which DNA polymorphisms in the intergenic regions affect gene regulation are poorly understood. Here we utilized a dominant genetic reporter to investigate the effect of cis and trans-acting regulatory variation. We performed a forward genetic screen for natural variation that suppressed or enhanced the semi-dominant mutant allele Oy1-N1989, encoding the magnesium chelatase subunit I of maize. This mutant permits rapid phenotyping of leaf color as a reporter for chlorophyll accumulation, and mapping of natural variation in maize affecting chlorophyll metabolism. We identified a single modifier locus segregating between B73 and Mo17 that was linked to the reporter gene itself, which we call very oil yellow1 (vey1). Based on the variation in OY1 transcript abundance and genome-wide association data, vey1 is predicted to consist of multiple cis-acting regulatory sequence polymorphisms encoded at the wild-type oy1 alleles. The vey1 locus appears to be a common polymorphism in the maize germplasm that alters the expression level of a key gene in chlorophyll biosynthesis. These vey1 alleles have no discernable impact on leaf chlorophyll in the absence of the Oy1-N1989 reporter. Thus, the use of a mutant as a reporter for magnesium chelatase activity resulted in the detection of expression-level polymorphisms not readily visible in the laboratory.


Assuntos
Epistasia Genética , Genes Modificadores , Polimorfismo Genético , Zea mays/genética , Alelos , Liases/genética , Liases/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
PLoS Pathog ; 14(10): e1007356, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30332488

RESUMO

Adult plant resistance (APR) is an enigmatic phenomenon in which resistance genes are ineffective in protecting seedlings from disease but confer robust resistance at maturity. Maize has multiple cases in which genes confer APR to northern leaf spot, a lethal disease caused by Cochliobolus carbonum race 1 (CCR1). The first identified case of APR in maize is encoded by a hypomorphic allele, Hm1A, at the hm1 locus. In contrast, wild-type alleles of hm1 provide complete protection at all developmental stages and in every part of the maize plant. Hm1 encodes an NADPH-dependent reductase, which inactivates HC-toxin, a key virulence effector of CCR1. Cloning and characterization of Hm1A ruled out differential transcription or translation for its APR phenotype and identified an amino acid substitution that reduced HC-toxin reductase (HCTR) activity. The possibility of a causal relationship between the weak nature of Hm1A and its APR phenotype was confirmed by the generation of two new APR alleles of Hm1 by mutagenesis. The HCTRs encoded by these new APR alleles had undergone relatively conservative missense changes that partially reduced their enzymatic activity similar to HM1A. No difference in accumulation of HCTR was observed between adult and juvenile plants, suggesting that the susceptibility of seedlings derives from a greater need for HCTR activity, not reduced accumulation of the gene product. Conditions and treatments that altered the photosynthetic output of the host had a dramatic effect on resistance imparted by the APR alleles, demonstrating a link between the energetic or metabolic status of the host and disease resistance affected by HC-toxin catabolism by the APR alleles of HCTR.


Assuntos
Resistência à Doença , Helminthosporium/fisiologia , Oxirredutases/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Virulência , Zea mays/microbiologia , Oxirredutases/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/crescimento & desenvolvimento
17.
PLoS One ; 13(9): e0201359, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30199528

RESUMO

We describe dropdead1-1 (ded1), an EMS-induced recessive lesion mimic mutant of sorghum. It is characterized by the formation of spreading necrotic lesions that share many attributes with those associated with the maize lethal leaf spot1 (lls1) and Arabidopsis accelerated cell death1 (acd1) mutation. We show that as in lls1, ded1 lesions are initiated by wounding and require light for continued propagation, and that loss of chloroplast integrity is responsible for ded1 cell death. Consistent with these parallels, we demonstrate that ded1 is an ortholog of lls1 and encodes pheophorbide a oxidase (PaO) with 93% identity at the protein level. The mutant ded1 allele resulted from a stop codon-inducing single base pair change in exon 6 of the sorghum ortholog of lls1. The ded1 transcript was rapidly and transiently induced after wounding and substantially elevated in leaves containing ded1 lesions. Given that PaO is a key enzyme of the chlorophyll degradation pathway, its dysfunction would result in the accumulation of pheophorbide, a potent photosensitizer that results in the production of singlet oxygen. Consistent with this, cell death associated with ded1 lesions is most likely caused by singlet oxygen as our results exclude superoxide and H2O2 from this role. We explore the signal responsible for the propagation of lesions affecting both ded1 and lls1 lesions and find that both developmental age and ethylene increase the rate of lesion expansion in both mutants.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Mutação , Proteínas de Plantas , Sorghum , Proteínas Reguladoras de Apoptose/metabolismo , Morte Celular , Clorofila/genética , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Superóxidos/metabolismo , Zea mays/genética
18.
G3 (Bethesda) ; 8(3): 1079-1094, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29378822

RESUMO

The accurate detection of induced mutations is critical for both forward and reverse genetics studies. Experimental chemical mutagenesis induces relatively few single base changes per individual. In a complex eukaryotic genome, false positive detection of mutations can occur at or above this mutagenesis rate. We demonstrate here, using a population of ethyl methanesulfonate (EMS)-treated Sorghum bicolor BTx623 individuals, that using replication to detect false positive-induced variants in next-generation sequencing (NGS) data permits higher throughput variant detection with greater accuracy. We used a lower sequence coverage depth (average of 7×) from 586 independently mutagenized individuals and detected 5,399,493 homozygous single nucleotide polymorphisms (SNPs). Of these, 76% originated from only 57,872 genomic positions prone to false positive variant calling. These positions are characterized by high copy number paralogs where the error-prone SNP positions are at copies containing a variant at the SNP position. The ability of short stretches of homology to generate these error-prone positions suggests that incompletely assembled or poorly mapped repeated sequences are one driver of these error-prone positions. Removal of these false positives left 1,275,872 homozygous and 477,531 heterozygous EMS-induced SNPs, which, congruent with the mutagenic mechanism of EMS, were >98% G:C to A:T transitions. Through this analysis, we generated a collection of sequence indexed mutants of sorghum. This collection contains 4035 high-impact homozygous mutations in 3637 genes and 56,514 homozygous missense mutations in 23,227 genes. Each line contains, on average, 2177 annotated homozygous SNPs per genome, including seven likely gene knockouts and 96 missense mutations. The number of mutations in a transcript was linearly correlated with the transcript length and also the G+C count, but not with the GC/AT ratio. Analysis of the detected mutagenized positions identified CG-rich patches, and flanking sequences strongly influenced EMS-induced mutation rates. This method for detecting false positive-induced mutations is generally applicable to any organism, is independent of the choice of in silico variant-calling algorithm, and is most valuable when the true mutation rate is likely to be low, such as in laboratory-induced mutations or somatic mutation detection in medicine.


Assuntos
Genoma de Planta , Genômica , Mutação , Sorghum/genética , Mapeamento Cromossômico , Biologia Computacional/métodos , Genômica/métodos , Genótipo , Humanos , Mutação INDEL , Anotação de Sequência Molecular , Mutagênese , Motivos de Nucleotídeos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
19.
Plant Direct ; 2(2): e00032, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31245703

RESUMO

Eutrema salsugineum is a model species for the study of plant adaptation to abiotic stresses. Two accessions of E. salsugineum, Shandong (SH) and Yukon (YK), exhibit contrasting morphology and biotic and abiotic stress tolerance. Transcriptome profiling and metabolic profiling from tissue samples collected during the dark period were used to investigate the molecular and metabolic bases of these contrasting phenotypes. RNA sequencing identified 17,888 expressed genes, of which 157 were not in the published reference genome, and 65 of which were detected for the first time. Differential expression was detected for only 31 genes. The RNA sequencing data contained 14,808 single nucleotide polymorphisms (SNPs) in transcripts, 3,925 of which are newly identified. Among the differentially expressed genes, there were no obvious candidates for the physiological or morphological differences between SH and YK. Metabolic profiling indicated that YK accumulates free fatty acids and long-chain fatty acid derivatives as compared to SH, whereas sugars are more abundant in SH. Metabolite levels suggest that carbohydrate and respiratory metabolism, including starch degradation, is more active during the first half of the dark period in SH. These metabolic differences may explain the greater biomass accumulation in YK over SH. The accumulation of 56% of the identified metabolites was lower in F1 hybrids than the mid-parent averages and the accumulation of 17% of the metabolites in F1 plants transgressed the level in both parents. Concentrations of several metabolites in F1 hybrids agree with previous studies and suggest a role for primary metabolism in heterosis. The improved annotation of the E. salsugineum genome and newly identified high-quality SNPs will permit accelerated studies using the standing variation in this species to elucidate the mechanisms of its diverse adaptations to the environment.

20.
Plant Cell ; 30(1): 48-66, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29263085

RESUMO

Inflorescence architecture is a key determinant of yield potential in many crops and is patterned by the organization and developmental fate of axillary meristems. In cereals, flowers and grain are borne from spikelets, which differentiate in the final iteration of axillary meristem branching. In Setaria spp, inflorescence branches terminate in either a spikelet or a sterile bristle, and these structures appear to be paired. In this work, we leverage Setaria viridis to investigate a role for the phytohormones brassinosteroids (BRs) in specifying bristle identity and maintaining spikelet meristem determinacy. We report the molecular identification and characterization of the Bristleless1 (Bsl1) locus in S. viridis, which encodes a rate-limiting enzyme in BR biosynthesis. Loss-of-function bsl1 mutants fail to initiate a bristle identity program, resulting in homeotic conversion of bristles to spikelets. In addition, spikelet meristem determinacy is altered in the mutants, which produce two florets per spikelet instead of one. Both of these phenotypes provide avenues for enhanced grain production in cereal crops. Our results indicate that the spatiotemporal restriction of BR biosynthesis at boundary domains influences meristem fate decisions during inflorescence development. The bsl1 mutants provide insight into the molecular basis underlying morphological variation in inflorescence architecture.


Assuntos
Brassinosteroides/farmacologia , Diferenciação Celular/efeitos dos fármacos , Inflorescência/citologia , Meristema/citologia , Setaria (Planta)/citologia , Alelos , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Loci Gênicos , Inflorescência/efeitos dos fármacos , Inflorescência/ultraestrutura , Meristema/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Fenótipo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/genética , Setaria (Planta)/ultraestrutura , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA