RESUMO
Precision medicine can significantly improve outcomes for patients with cancer, but implementation requires comprehensive characterization of tumor cells to identify therapeutically exploitable vulnerabilities. Here, we describe somatic biallelic TET2 mutations in an elderly patient with acute myeloid leukemia (AML) that was chemoresistant to anthracycline and cytarabine but acutely sensitive to 5'-azacitidine (5'-Aza) hypomethylating monotherapy, resulting in long-term morphological remission. Given the role of TET2 as a regulator of genomic methylation, we hypothesized that mutant TET2 allele dosage affects response to 5'-Aza. Using an isogenic cell model system and an orthotopic mouse xenograft, we demonstrate that biallelic TET2 mutations confer sensitivity to 5'-Aza compared with cells with monoallelic mutations. Our data argue in favor of using hypomethylating agents for chemoresistant disease or as first-line therapy in patients with biallelic TET2-mutated AML and demonstrate the importance of considering mutant allele dosage in the implementation of precision medicine for patients with cancer.
Assuntos
Dioxigenases , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Azacitidina , Leucemia Mieloide Aguda/genética , Estimativa de Kaplan-Meier , Mutação , Proteínas de Ligação a DNA/genética , Dioxigenases/genéticaRESUMO
Resistant disease is still a main obstacle in acute myeloid leukemia (AML) treatment. Therefore, individual genetic variations affecting therapy response are gaining increasing importance. Both SNPs and ABC transporter genes could already be associated with drug resistance. Here, we report allelic variants of MRP1 (ABCC1) SNPs rs129081, rs212090, and rs212091 with significant influences on survival in AML patients. DNA was extracted from bone marrow samples (n = 160) at diagnosis. Genotyping 48 SNPs within seven different ABC transporter genes using real-time PCR revealed rs129081 GG variant with a significant higher OS (p = 0.035) and DFS (p = 0.01). Comparing TT and AA rs212090 variants showed significant influences on DFS (p = 0.021). SNP rs212091 GG expression was associated with worse OS (p = 0.006) and a significant difference in DFS between alleles GG and AA (p = 0.018). The multivariable models confirmed a significant influence on OS for rs212091 (AA HR = 0.296, 95% CI 0.113-0.774, p = 0.013 and GG p = 0.044). Rs129081 variant CG, TT of rs212090, AA, and AG of rs212091 demonstrated significant impact on DFS (p = 0.024, p = 0.029, p = 0.017, and p = 0.042, respectively). This analysis demonstrates a significant influence of MRP1 SNPs on survival in AML. As they were not associated to prognostic characteristics, we suggest these SNPs to be independent prognostic markers for AML.
Assuntos
Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Feminino , Humanos , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Taxa de Sobrevida/tendências , Adulto JovemRESUMO
BACKGROUND: Lysyl oxidase (LOX) has been described as necessary for premetastatic niche formation in epithelium-derived malignancies and its expression level therefore correlates with risk of metastatic disease and overall survival. However, its role in acute myeloid leukemia (AML) has not been sufficiently analyzed. METHODS: We investigated LOX plasma expression in 683 AML patients (age 17-60 years) treated within the prospective AML2003 trial (NCT00180102). The optimal cut-off LOX value was determined using a minimal-p-value method dichotomizing patients into a LOX-high group (> 109 ng/mL, n = 272, 40%) and a LOX-low group (≤ 109 ng/mL, n = 411, 60%). RESULTS: Higher LOX expression was associated with lower peripheral white blood cells, lower serum LDH, and a lower frequency of FLT3-ITD and NPM1 mutations at diagnosis. Higher LOX expression was found significantly more frequently in patients with secondary AML and therapy-related AML, in patients with French-American-British M5 subtypes, and in patients with adverse-risk cytogenetics. Comparing patients in the LOX-high group and the LOX-low group revealed a 3-year overall survival (OS) of 47 and 53% (p = 0.022) and 3-year event-free survival (EFS) of 27 and 35% (p = 0.005), respectively. In the LOX-high group significantly more patients had extramedullary AML compared to the LOX-low group (p = 0.037). Combining extramedullary AML and LOX as interacting factors in a multivariate analysis resulted in an independent impact on survival for the LOX-high-extramedullary interaction for OS (HR = 2.25, p = 0.025) and EFS (HR = 2.48, p = 0.008). Furthermore, in patients with extramedullary disease (n = 59) the LOX level predicted survival. Patients within the LOX-low group had an OS of 43% and EFS of 36% as compared to the LOX-high group with an OS of 13% and EFS of 6% (p = 0.002 and p = 0.008, respectively). CONCLUSION: We hypothesize LOX expression to be a new potential biomarker to predict outcome in AML, specifically in AML subgroups such as the prognostic heterogeneous group of AML patients with extramedullary disease. TRIAL REGISTRATION: This retrospective study was performed with patient samples registered within the prospective AML2003 trial (NCT00180102). Patients were enrolled between December 2003 and November 2009.