RESUMO
Identification of somatic driver mutations in the noncoding genome remains challenging. To comprehensively characterize noncoding driver mutations for pancreatic ductal adenocarcinoma (PDAC), we first created genome-scale maps of accessible chromatin regions (ACRs) and histone modification marks (HMMs) in pancreatic cell lines and purified pancreatic acinar and duct cells. Integration with whole-genome mutation calls from 506 PDACs revealed 314 ACRs/HMMs significantly enriched with 3,614 noncoding somatic mutations (NCSMs). Functional assessment using massively parallel reporter assays (MPRA) identified 178 NCSMs impacting reporter activity (19.45% of those tested). Focused luciferase validation confirmed negative effects on gene regulatory activity for NCSMs near CDKN2A and ZFP36L2. For the latter, CRISPR interference (CRISPRi) further identified ZFP36L2 as a target gene (16.0 - 24.0% reduced expression, P = 0.023-0.0047) with disrupted KLF9 binding likely mediating the effect. Our integrative approach provides a catalog of potentially functional noncoding driver mutations and nominates ZFP36L2 as a PDAC driver gene.
RESUMO
The molecular mechanisms underlying chemoresistance in some newly diagnosed multiple myeloma (MM) patients receiving standard therapies (lenalidomide, bortezomib, and dexamethasone) are poorly understood. Identifying clinically relevant gene networks associated with death due to MM may uncover novel mechanisms, drug targets, and prognostic biomarkers to improve the treatment of the disease. This study used data from the MMRF CoMMpass RNA-seq dataset (N = 270) for weighted gene co-expression network analysis (WGCNA), which identified 21 modules of co-expressed genes. Genes differentially expressed in patients with poor outcomes were assessed using two independent sample t-tests (dead and alive MM patients). The clinical performance of biomarker candidates was evaluated using overall survival via a log-rank Kaplan-Meier and ROC test. Four distinct modules (M10, M13, M15, and M20) were significantly correlated with MM vital status and differentially expressed between the dead (poor outcomes) and the alive MM patients within two years. The biological functions of modules positively correlated with death (M10, M13, and M20) were G-protein coupled receptor protein, cell-cell adhesion, cell cycle regulation genes, and cellular membrane fusion genes. In contrast, a negatively correlated module to MM mortality (M15) was the regulation of B-cell activation and lymphocyte differentiation. MM biomarkers CTAG2, MAGEA6, CCND2, NEK2, and E2F2 were co-expressed in positively correlated modules to MM vital status, which was associated with MM's lower overall survival.
RESUMO
BACKGROUND: Chronic lymphocytic leukemia (CLL) is an indolent heme malignancy characterized by the accumulation of CD5+ CD19+ B cells and episodes of relapse. The biological signaling that influence episodes of relapse in CLL are not fully described. Here, we identify gene networks associated with CLL relapse and survival risk. METHODS: Networks were investigated by using a novel weighted gene network co-expression analysis method and examining overrepresentation of upstream regulators and signaling pathways within co-expressed transcriptome modules across clinically annotated transcriptomes from CLL patients (N = 203). Gene Ontology analysis was used to identify biological functions overrepresented in each module. Differential Expression of modules and individual genes was assessed using an ANOVA (Binet Stage A and B relapsed patients) or T-test (SF3B1 mutations). The clinical relevance of biomarker candidates was evaluated using log-rank Kaplan Meier (survival and relapse interval) and ROC tests. RESULTS: Eight distinct modules (M2, M3, M4, M7, M9, M10, M11, M13) were significantly correlated with relapse and differentially expressed between relapsed and non-relapsed Binet Stage A CLL patients. The biological functions of modules positively correlated with relapse were carbohydrate and mRNA metabolism, whereas negatively correlated modules to relapse were protein translation associated. Additionally, M1, M3, M7, and M13 modules negatively correlated with overall survival. CLL biomarkers BTK, BCL2, and TP53 were co-expressed, while unmutated IGHV biomarker ZAP70 and cell survival-associated NOTCH1 were co-expressed in modules positively correlated with relapse and negatively correlated with survival days. CONCLUSIONS: This study provides novel insights into CLL relapse biology and pathways associated with known and novel biomarkers for relapse and overall survival. The modules associated with relapse and overall survival represented both known and novel pathways associated with CLL pathogenesis and can be a resource for the CLL research community. The hub genes of these modules, e.g., ARHGAP27P2, C1S, CASC2, CLEC3B, CRY1, CXCR5, FUT5, MID1IP1, and URAHP, can be studied further as new therapeutic targets or clinical markers to predict CLL patient outcomes.
Assuntos
Leucemia Linfocítica Crônica de Células BRESUMO
We aimed to identify triple-negative breast cancer (TNBC) drivers that regulate survival time as predictive signatures that improve TNBC prognostication. Breast cancer (BrCa) transcriptomic tumor biopsies were analyzed, identifying network communities enriched with TNBC-specific differentially expressed genes (DEGs) and correlated strongly to TNBC status. Two anticorrelated modules correlated strongly to TNBC subtype and survival. Querying module-specific hubs and DEGs revealed transcriptional changes associated with high survival. Transcripts were nominated as biomarkers and tested as combinatoric ratios using receiver operator characteristic (ROC) analysis to assess survival prediction. ROC test rounds integrated genes with established interactions to hubs and DEGs of key modules, improving prediction. Finally, we tested whether integration of literature-derived genes for implicated hallmark cancer processes could improve prediction of survival. Complementary coexpression, differential expression, genetic interaction, and survival stratification integrated by ROC optimization uncovered a panel of "linchpin survival genes" predictive of patient survival, representing gene interactions in hallmark cancer processes.
RESUMO
The tumor immune microenvironment (TIME) consists of multiple cell types that contribute to the heterogeneity and complexity of prostate cancer (PCa). In this study, we sought to understand the gene-expression signature of patients with primary prostate tumors by investigating the co-expression profiles of patient samples and their corresponding clinical outcomes, in particular "disease-free months" and "disease reoccurrence". We tested the hypothesis that the CXCL13-CXCR5 axis is co-expressed with factors supporting TIME and PCa progression. Gene expression counts, with clinical attributes from PCa patients, were acquired from TCGA. Profiles of PCa patients were used to identify key drivers that influence or regulate CXCL13-CXCR5 signaling. Weighted gene co-expression network analysis (WGCNA) was applied to identify co-expression patterns among CXCL13-CXCR5, associated genes, and key genetic drivers within the CXCL13-CXCR5 signaling pathway. The processing of downloaded data files began with quality checks using NOISeq, followed by WGCNA. Our results confirmed the quality of the TCGA transcriptome data, identified 12 co-expression networks, and demonstrated that CXCL13, CXCR5 and associated genes are members of signaling networks (modules) associated with G protein coupled receptor (GPCR) responsiveness, invasion/migration, immune checkpoint, and innate immunity. We also identified top canonical pathways and upstream regulators associated with CXCL13-CXCR5 expression and function.