Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 15(22): 14389-95, 2007 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19550717

RESUMO

We present results of pulsed, narrowband amplification at 1540.6nm using a polarization maintaining, large mode area gain fiber codoped with erbium and ytterbium. At a repetition rate of 55 kHz, 2.9 W of average 1540.6nm power were generated with a pulse duration of 136 ns, corresponding to an SBS free peak power of 360 W. The amplified signal was frequency doubled in peridically poled potassium titanyl phosphate and conversion efficiencies of up to 56% were generated. When varying the repetition rate between 55-150 kHz the conversion efficiency changed from 56% to 35% due to the limited pump power.

2.
Philos Trans A Math Phys Eng Sci ; 364(1840): 611-22, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16483952

RESUMO

The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two novel LWFA approaches are being investigated. In the first one, called pseudo-resonant LWFA, a laser pulse enters a low-density plasma where nonlinear laser/plasma interactions cause the laser pulse shape to steepen, thereby creating strong wakefields. A witness e-beam pulse probes the wakefields. The second one, called seeded self-modulated LWFA, involves sending a seed e-beam pulse into the plasma to initiate wakefield formation. These wakefields are amplified by a laser pulse following shortly after the seed pulse. A second e-beam pulse (witness) follows the seed pulse to probe the wakefields. These LWFA experiments will also be the first ones driven by a CO(2) laser beam.

3.
Phys Rev Lett ; 92(5): 054801, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14995313

RESUMO

Laser-driven electron accelerators (laser linacs) offer the potential for enabling much more economical and compact devices. However, the development of practical and efficient laser linacs requires accelerating a large ensemble of electrons together ("trapping") while keeping their energy spread small. This has never been realized before for any laser acceleration system. We present here the first demonstration of high-trapping efficiency and narrow energy spread via laser acceleration. Trapping efficiencies of up to 80% and energy spreads down to 0.36% (1 sigma) were demonstrated.

4.
Phys Rev Lett ; 86(18): 4041-3, 2001 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-11328090

RESUMO

Staging of two laser-driven, relativistic electron accelerators has been demonstrated for the first time in a proof-of-principle experiment, whereby two distinct and serial laser accelerators acted on an electron beam in a coherently cumulative manner. Output from a CO2 laser was split into two beams to drive two inverse free electron lasers (IFEL) separated by 2.3 m. The first IFEL served to bunch the electrons into approximately 3 fs microbunches, which were rephased with the laser wave in the second IFEL. This represents a crucial step towards the development of practical laser-driven electron accelerators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA