Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
BMC Ecol Evol ; 24(1): 55, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664688

RESUMO

BACKGROUND: Sex differences in mitochondrial function have been reported in multiple tissue and cell types. Additionally, sex-variable responses to stressors including environmental pollutants and drugs that cause mitochondrial toxicity have been observed. The mechanisms that establish these differences are thought to include hormonal modulation, epigenetic regulation, double dosing of X-linked genes, and the maternal inheritance of mtDNA. Understanding the drivers of sex differences in mitochondrial function and being able to model them in vitro is important for identifying toxic compounds with sex-variable effects. Additionally, understanding how sex differences in mitochondrial function compare across species may permit insight into the drivers of these differences, which is important for basic biology research. This study explored whether Caenorhabditis elegans, a model organism commonly used to study stress biology and toxicology, exhibits sex differences in mitochondrial function and toxicant susceptibility. To assess sex differences in mitochondrial function, we utilized four male enriched populations (N2 wild-type male enriched, fog-2(q71), him-5(e1490), and him-8(e1498)). We performed whole worm respirometry and determined whole worm ATP levels and mtDNA copy number. To probe whether sex differences manifest only after stress and inform the growing use of C. elegans as a mitochondrial health and toxicologic model, we also assessed susceptibility to a classic mitochondrial toxicant, rotenone. RESULTS: We detected few to no large differences in mitochondrial function between C. elegans sexes. Though we saw no sex differences in vulnerability to rotenone, we did observe sex differences in the uptake of this lipophilic compound, which may be of interest to those utilizing C. elegans as a model organism for toxicologic studies. Additionally, we observed altered non-mitochondrial respiration in two him strains, which may be of interest to other researchers utilizing these strains. CONCLUSIONS: Basal mitochondrial parameters in male and hermaphrodite C. elegans are similar, at least at the whole-organism level, as is toxicity associated with a mitochondrial Complex I inhibitor, rotenone. Our data highlights the limitation of using C. elegans as a model to study sex-variable mitochondrial function and toxicological responses.


Assuntos
Caenorhabditis elegans , DNA Mitocondrial , Mitocôndrias , Caracteres Sexuais , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Feminino , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA Mitocondrial/efeitos dos fármacos
2.
PLoS One ; 19(2): e0297538, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381723

RESUMO

Canines are one of the best biological detectors of energetic materials available; however, canine detection of explosives is impacted by a number of factors, including environmental conditions. The objectives of this study were: 1) determine how canine detection limits vary when both the canine and odorant are tested in varying temperature and humidity conditions (canine and odor interactive effects); and 2) determine if an acclimatization plan can improve detection limits in an adverse environmental condition. Eight working line canines were trained to detect four energetics: prill ammonium nitrate (AN), Composition 4 (C4), trinitrotoluene (TNT) and double base smokeless powder (SP). In Experiment 1, canines completed a 3-alternative forced choice 3-down-1-up staircase threshold assessment in five environmental conditions: 40°C and 70% relative humidity (RH), 40°C and 40% RH, 0°C and 90% RH, 0°C and 50% RH and 21°C and 50% RH. Canines showed a 3.5-fold detection limit increase (poorer detection) for C4 in 40°C and 70% RH compared to their detection limit at 21°C and 50% RH. In Experiment 2, the eight canines were split into two groups (n = 4), control and acclimation groups. The control group completed the threshold assessment for C4 at 21°C and 50% RH each day for 20 days, with 5 minutes of petting prior to testing. The acclimation group completed the same assessment daily starting at 21°C and 50% RH but temperature and RH were incremented daily over the course of 6 days to the 40°C and 70% RH condition. After the initial six days, the acclimation group completed daily assessments at 40°C and 70% RH condition for the remainder of the experiment. All acclimatization group canines started their session with 5 minutes of toy or food retrieves. Detection limits for C4 for all dogs were tested in 40°C and 70% RH on day 11 and day 22. The acclimatization plan improved detection limits in the 40°C and 70% RH condition for C4 compared to the non-acclimated group. In this set of experiments, canine detection limits for four explosive odorants were found to vary based on environmental condition and were mostly driven by impacts on the canine rather than odor availability. The acclimatization plan did result in lower detection limits (i.e., increased performance). Future work should determine what factor (exercise or environmental exposure) is more effective in acclimatization for odor detection work.


Assuntos
Substâncias Explosivas , Cães , Animais , Aclimatação , Temperatura , Temperatura Corporal , Umidade , Temperatura Alta
3.
Front Genet ; 15: 1348855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356697

RESUMO

The field of environmental epigenetics is uniquely suited to investigate biologic mechanisms that have the potential to link stressors to health disparities. However, it is common practice in basic epigenetic research to treat race as a covariable in large data analyses in a way that can perpetuate harmful biases without providing any biologic insight. In this article, we i) propose that epigenetic researchers open a dialogue about how and why race is employed in study designs and think critically about how this might perpetuate harmful biases; ii) call for interdisciplinary conversation and collaboration between epigeneticists and social scientists to promote the collection of more detailed social metrics, particularly institutional and structural metrics such as levels of discrimination that could improve our understanding of individual health outcomes; iii) encourage the development of standards and practices that promote full transparency about data collection methods, particularly with regard to race; and iv) encourage the field of epigenetics to continue to investigate how social structures contribute to biological health disparities, with a particular focus on the influence that structural racism may have in driving these health disparities.

4.
Mol Microbiol ; 120(4): 547-554, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37408317

RESUMO

First row d-block metal ions serve as vital cofactors for numerous essential enzymes and are therefore required nutrients for all forms of life. Despite this requirement, excess free transition metals are toxic. Free metal ions participate in the production of noxious reactive oxygen species and mis-metalate metalloproteins, rendering enzymes catalytically inactive. Thus, bacteria require systems to ensure metalloproteins are properly loaded with cognate metal ions to maintain protein function, while avoiding metal-mediated cellular toxicity. In this perspective we summarize the current mechanistic understanding of bacterial metallocenter maturation with specific emphasis on metallochaperones; a group of specialized proteins that both shield metal ions from inadvertent reactions and distribute them to cognate target metalloproteins. We highlight several recent advances in the field that have implicated new classes of proteins in the distribution of metal ions within bacterial proteins, while speculating on the future of the field of bacterial metallobiology.


Assuntos
Metaloproteínas , Metaloproteínas/metabolismo , Metais/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Íons/metabolismo
5.
Environ Sci Process Impacts ; 25(11): 1743-1751, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503664

RESUMO

Lead (Pb2+) is an important developmental toxicant. The mitochondrial calcium uniporter (MCU) imports calcium ions using the mitochondrial membrane potential (MMP), and also appears to mediate the influx of Pb2+ into the mitochondria. Since our environment contains mixtures of toxic agents, it is important to consider multi-chemical exposures. To begin to develop generalizable, predictive models of interactive toxicity, we developed mechanism-based hypotheses about interactive effects of Pb2+ with other chemicals. To test these hypotheses, we exposed HepG2 (human liver) cells to Pb2+ alone and in mixtures with other mitochondria-damaging chemicals: carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a mitochondrial uncoupler that reduces MMP, and Ruthenium Red (RuRed), a dye that inhibits the MCU. After 24 hours, Pb2+ alone, the mixture of Pb2+ and RuRed, and the mixture of Pb2+ and FCCP caused no decrease in cell viability. However, the combination of all three exposures led to a significant decrease in cell viability at higher Pb2+ concentrations. After 48 hours, the co-exposure to elevated Pb2+ concentrations and FCCP caused a significant decrease in cell viability, and the mixture of all three showed a clear dose-response curve with significant decreases in cell viability across a range of Pb2+ concentrations. We performed ICP-MS analyses on isolated mitochondrial and cytosolic fractions and found no differences in Pb2+ uptake across exposure groups, ruling out altered cellular uptake as the mechanism for interactive toxicity. We assessed MMP following exposure and observed a decrease in membrane potential that corresponds to loss of cell viability but is likely not sufficient to be the causative mechanistic driver of cell death. This research provides a mechanistically-based framework for understanding Pb2+ toxicity in mixtures with mitochondrial toxicants.


Assuntos
Chumbo , Mitocôndrias , Humanos , Chumbo/toxicidade , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Mitocôndrias/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio/farmacologia , Cálcio
6.
J Dairy Sci ; 106(9): 6249-6262, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37500433

RESUMO

Grass management technologies (grass measuring devices and grassland management decision support tools) have been identified as important tools to improve the performance of pasture-based dairy farms. They have the potential to significantly improve the efficiency and sustainability of dairy systems by increasing milk production through enhanced pasture growth and utilization, which would reduce the need for supplementary feeds, along with increased output, therefore increasing farm profitability and environmental sustainability. Despite the several potential benefits of grass management technologies, there is a lack of empirical research around the effects of these technologies on the performance of pasture-based dairy systems. The current study aimed to fill this knowledge gap by using a 2018 nationally representative survey of Irish dairy farms and a propensity score matching approach to determine the effects of adopting grass management technologies on the physical, environmental, and financial performance of Irish pasture-based dairy farms. The findings showed that dairy farms utilizing grass management technologies had, on average, higher farm physical, environmental, and financial performance (in terms of grazed pasture use, total pasture use, length of the grazing season, milk yield, milk solids, greenhouse gas emissions per kilogram of fat- and protein-corrected milk, gross output, and gross margin) compared with dairy farms not utilizing these technologies. However, when controlling for selection bias, we can only attribute a positive causal effect of grass management technology adoption on the use of grazed pasture per cow, grazing season length, milk yield per cow, and milk solids per cow. This might be due to dairy farmers not yet using the technologies to their full potential, 2018 being an unusual year in terms of weather (and therefore not being able to capture the full range of farm performance benefits), or because grass management technologies need to be adopted in association with other technologies and practices to achieve their expected performance outcomes. Future research should include updated farm-level data to capture the weather and learning effects and so be able to determine the impact of grass management technologies on a wider range of performance indicators.


Assuntos
Ração Animal , Lactação , Bovinos , Feminino , Animais , Fazendas , Ração Animal/análise , Dieta/veterinária , Poaceae , Indústria de Laticínios , Leite
7.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37215639

RESUMO

Collagen mutations are commonly used in the creation of Caenorhabditis elegans transgenic strains, but their secondary effects are not fully characterized . We compared the mitochondrial function of N2, dpy-10, rol-6, and PE255 C. elegans . N2 worms exhibited ~2-fold greater volume, mitochondrial DNA copy number, and nuclear DNA copy number than collagen mutants (p<0.05). Whole-worm respirometry and ATP levels were higher in N2 worms, but differences in respirometry largely disappeared after normalization to mitochondrial DNA copy number. This data suggests that rol-6 and dpy-10 mutants are developmentally delayed but have comparable mitochondrial function to N2 worms once the data is normalized to developmental stage.

8.
NPJ Microgravity ; 9(1): 11, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737441

RESUMO

Exercise training is a key countermeasure used to offset spaceflight-induced multisystem deconditioning. Here, we evaluated the effects of exercise countermeasures on multisystem function in a large cohort (N = 46) of astronauts on long-duration spaceflight missions. We found that during 178 ± 48 d of spaceflight, ~600 min/wk of aerobic and resistance exercise did not fully protect against multisystem deconditioning. However, substantial inter-individual heterogeneity in multisystem response was apparent with changes from pre to postflight ranging from -30% to +5%. We estimated that up to 17% of astronauts would experience performance-limiting deconditioning if current exercise countermeasures were used on future spaceflight missions. These findings support the need for refinement of current countermeasures, adjunct interventions, or enhanced requirements for preflight physiologic and functional capacity for the protection of astronaut health and performance during exploration missions to the moon and beyond.

9.
Sci Immunol ; 8(79): eabq0178, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638190

RESUMO

T cells in systemic lupus erythematosus (SLE) exhibit multiple metabolic abnormalities. Excess iron can impair mitochondria and may contribute to SLE. To gain insights into this potential role of iron in SLE, we performed a CRISPR screen of iron handling genes on T cells. Transferrin receptor (CD71) was identified as differentially critical for TH1 and inhibitory for induced regulatory T cells (iTregs). Activated T cells induced CD71 and iron uptake, which was exaggerated in SLE-prone T cells. Cell surface CD71 was enhanced in SLE-prone T cells by increased endosomal recycling. Blocking CD71 reduced intracellular iron and mTORC1 signaling, which inhibited TH1 and TH17 cells yet enhanced iTregs. In vivo treatment reduced kidney pathology and increased CD4 T cell production of IL-10 in SLE-prone mice. Disease severity correlated with CD71 expression on TH17 cells from patients with SLE, and blocking CD71 in vitro enhanced IL-10 secretion. T cell iron uptake via CD71 thus contributes to T cell dysfunction and can be targeted to limit SLE-associated pathology.


Assuntos
Lúpus Eritematoso Sistêmico , Receptores da Transferrina , Linfócitos T Reguladores , Animais , Camundongos , Interleucina-10/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Receptores da Transferrina/metabolismo , Linfócitos T Reguladores/metabolismo , Humanos
10.
Curr Oncol ; 29(11): 8340-8356, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36354718

RESUMO

Many cancer patients undergoing treatment experience cancer-related fatigue (CRF). Inflammatory markers are correlated with CRF but are not routinely targeted for treatment. We previously demonstrated in an NIH-funded placebo-controlled, double-blind, randomized clinical trial (NCT00878995, closed to follow-up) that seven weekly injections of 100 mg adjunct testosterone preserved lean body mass in cancer patients undergoing standard-of-care treatment in a hospital setting. Because testosterone therapy can reduce circulating proinflammatory cytokines, we conducted an ancillary analysis to determine if this testosterone treatment reduced inflammatory burden and improved CRF symptoms and health-related quality of life. Randomization was computer-generated and managed by the pharmacy, which dispensed testosterone and placebo in opaque syringes to the administering study personnel. A total of 24 patients were randomized (14 placebo, 10 testosterone), and 21 were included in the primary analysis (11 placebo, 10 testosterone). Testosterone therapy did not ameliorate CRF symptoms (placebo to testosterone difference in predicted mean multidimensional fatigue symptom inventory scores: -5.6, 95% CI: -24.6 to 13.3), improve inflammatory markers, or preserve health-related quality of life and functional measures of performance in late-stage cancer patients.


Assuntos
Neoplasias , Testosterona , Humanos , Testosterona/uso terapêutico , Qualidade de Vida , Fadiga/tratamento farmacológico , Fadiga/etiologia , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Composição Corporal
11.
PLoS Pathog ; 18(9): e1010809, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36054235

RESUMO

Acinetobacter baumannii is an opportunistic pathogen and an emerging global health threat. Within healthcare settings, major presentations of A. baumannii include bloodstream infections and ventilator-associated pneumonia. The increased prevalence of ventilated patients during the COVID-19 pandemic has led to a rise in secondary bacterial pneumonia caused by multidrug resistant (MDR) A. baumannii. Additionally, due to its MDR status and the lack of antimicrobial drugs in the development pipeline, the World Health Organization has designated carbapenem-resistant A. baumannii to be its priority critical pathogen for the development of novel therapeutics. To better inform the design of new treatment options, a comprehensive understanding of how the host contains A. baumannii infection is required. Here, we investigate the innate immune response to A. baumannii by assessing the impact of infection on host gene expression using NanoString technology. The transcriptional profile observed in the A. baumannii infected host is characteristic of Gram-negative bacteremia and reveals expression patterns consistent with the induction of nutritional immunity, a process by which the host exploits the availability of essential nutrient metals to curtail bacterial proliferation. The gene encoding for lipocalin-2 (Lcn2), a siderophore sequestering protein, was the most highly upregulated during A. baumannii bacteremia, of the targets assessed, and corresponds to robust LCN2 expression in tissues. Lcn2-/- mice exhibited distinct organ-specific gene expression changes including increased transcription of genes involved in metal sequestration, such as S100A8 and S100A9, suggesting a potential compensatory mechanism to perturbed metal homeostasis. In vitro, LCN2 inhibits the iron-dependent growth of A. baumannii and induces iron-regulated gene expression. To elucidate the role of LCN2 in infection, WT and Lcn2-/- mice were infected with A. baumannii using both bacteremia and pneumonia models. LCN2 was not required to control bacterial growth during bacteremia but was protective against mortality. In contrast, during pneumonia Lcn2-/- mice had increased bacterial burdens in all organs evaluated, suggesting that LCN2 plays an important role in inhibiting the survival and dissemination of A. baumannii. The control of A. baumannii infection by LCN2 is likely multifactorial, and our results suggest that impairment of iron acquisition by the pathogen is a contributing factor. Modulation of LCN2 expression or modifying the structure of LCN2 to expand upon its ability to sequester siderophores may thus represent feasible avenues for therapeutic development against this pathogen.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriemia , COVID-19 , Pneumonia Bacteriana , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Animais , Carbapenêmicos/farmacologia , Humanos , Imunidade Inata , Ferro/metabolismo , Lipocalina-2/genética , Lipocalina-2/metabolismo , Camundongos , Pandemias , Sideróforos/metabolismo
12.
Front Toxicol ; 4: 929219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936387
13.
Epigenetics ; 17(12): 1573-1589, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35238269

RESUMO

Sex-linked differences in mitochondrial ATP production, enzyme activities, and reactive oxygen species generation have been reported in multiple tissue and cell types. While the effects of reproductive hormones underlie many of these differences, regulation of sexually dimorphic mitochondrial function has not been fully characterized. We hypothesized that sex-specific DNA methylation contributes to sex-specific expression of nuclear genes that influence mitochondrial function. Herein, we analysed DNA methylation data specifically focused on nuclear-encoded mitochondrial genes in 191 males and 190 females. We found 596 differentially methylated sites (DMSs) (FDR p < 0.05), corresponding to 324 genes, with at least a 1% difference in methylation between sexes. To investigate the potential functional significance, we utilized gene expression microarray data. Of the 324 genes containing DMSs, 17 showed differences in gene expression by sex. Particularly striking was that ATP5G2, encoding subunit C of ATP synthase, contains seven DMSs and exhibits a sex difference in expression (p = 0.04). Finally, we also found that alterations in DNA methylation associated with in utero tobacco smoke exposure were sex-specific in these nuclear-encoded mitochondrial genes. Interestingly, the level of sex differences in DNA methylation at nuclear-encoded mitochondrial genes and the level of methylation changes associated with smoke exposure were less prominent than that of other genes. This suggests more conservative regulation of DNA methylation at these nuclear-encoded mitochondrial genes as compared to others. Overall, our findings suggest that sex-specific DNA methylation may help establish sex differences in expression and function and that sex-specific alterations in DNA methylation in response to exposures could contribute to sex-variable toxicological responses.


Assuntos
Metilação de DNA , Exposição Materna , Fatores Sexuais , Poluição por Fumaça de Tabaco , Feminino , Humanos , Masculino , Trifosfato de Adenosina , Genes Mitocondriais , Hormônios , Espécies Reativas de Oxigênio
14.
MicroPubl Biol ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-34604717

RESUMO

To generate a non-red/green fluorescent fusion histone protein in C. elegans, we have generated a C-terminal mTurquoise2-tagged HIS-72 at the endogenous locus using CRISPR. We found that HIS-72::mTurquoise2 localizes in a similar pattern to the previously published HIS-72::GFP strain.

15.
Infect Immun ; 89(12): e0044121, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34543121

RESUMO

Cholera is an epidemic disease caused by the Gram-negative bacterium Vibrio cholerae. V. cholerae is found in aquatic ecosystems and infects people through the consumption of V. cholerae-contaminated food or water. Following ingestion, V. cholerae responds to host cues to activate the expression of critical virulence genes that are under the control of a hierarchical regulatory system called the ToxR regulon. The ToxR regulon is tightly regulated and is expressed in vitro only under special growth conditions referred to as AKI conditions. AKI conditions have been instrumental in elucidating V. cholerae virulence regulation, but the chemical cues within AKI medium that activate virulence gene expression are unknown. In this study, we fractionated AKI medium on a reverse-phase chromatography column (RPCC) and showed that the virulence-activating molecules were retained on the RPCC column and recovered in the eluate. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis of the eluate revealed the presence of a known ToxR regulon activator, taurocholate, and other bile salts. The RPCC eluate activated the ToxR regulon when added to noninducing medium and promoted TcpP dimerization in a two-hybrid system, consistent with taurocholate being responsible for the virulence-inducing activity of AKI medium. Additional experiments using purified bile salts showed that the ToxR regulon was preferentially activated in response to primary bile acids. The results of this study shed light on the chemical cues involved in V. cholerae virulence activation and suggested that V. cholerae virulence genes are modulated in response to regionally specific bile acid species in the intestine.


Assuntos
Proteínas de Bactérias/genética , Ácidos e Sais Biliares/metabolismo , Cólera/metabolismo , Cólera/microbiologia , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Regulon , Fatores de Transcrição/genética , Vibrio cholerae/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Cromatografia Líquida , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Humanos , Espectrometria de Massas , Fatores de Transcrição/química , Fatores de Transcrição/isolamento & purificação , Vibrio cholerae/patogenicidade , Virulência/genética , Fatores de Virulência/genética
16.
Environ Epigenet ; 7(1): dvab009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557312

RESUMO

Cannabis use alters sperm DNA methylation, but the potential reversibility of these changes is unknown. Semen samples from cannabis users and non-user controls were collected at baseline and again following a 77-day period of cannabis abstinence (one spermatogenic cycle). Users and controls did not significantly differ by demographics or semen analyses. Whole-genome bisulfite sequencing identified 163 CpG sites with significantly different DNA methylation in sperm between groups (P < 2.94 × 10-9). Genes associated with altered CpG sites were enriched with those involved in development, including cardiogenesis and neurodevelopment. Many of the differences in sperm DNA methylation between groups were diminished after cannabis abstinence. These results indicate that sustained cannabis abstinence significantly reduces the number of sperm showing cannabis-associated alterations at genes important for early development.

17.
MicroPubl Biol ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-34423283

RESUMO

DNA methylation is an important epigenetic mechanism involved in proper genome function. Bisulfite pyrosequencing (PSQ) is a commonly used technique to quantify DNA methylation. Although very accurate, bisulfite pyrosequencing can be expensive and time consuming for large-scale quantitative DNA methylation analysis at the single nucleotide level. High throughput DNA methylation sequencing has the potential to address these limitations, but its comparability to other methylation detection methods has not been well studied. We compared QIAseq Targeted Methyl Panel technologies (QMS) and PSQ by analyzing four CpG sites within four genes involved in neurodevelopment. QMS and PSQ had an average 5.6% difference in the detected level of DNA methylation for the same four CpG sites. However, we observed a strong correlation in the levels of methylation across all four CpG sites between the two technologies. These findings demonstrate the comparability of QMS relative to PSQ in the ability to accurately quantify DNA methylation at specific CpG sites.

18.
Amino Acids ; 53(12): 1957-1966, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34244859

RESUMO

There are marked decreases in plasma concentrations of cortisol and arginine (an essential amino acid for neonates) as well as intestinal citrulline synthesis in piglets during the first 14 days of life. The objective of this study was to test the hypothesis that increasing plasma cortisol concentrations by cortisol administration may prevent the decline in intestinal citrulline and arginine synthesis from proline, thereby possibly increasing plasma arginine concentration in suckling piglets and their growth. Seven-day-old pigs reared by sows received daily intramuscular injections of hydrocortisone 21-acetate (25 mg/kg) or vehicle solution (saline) (n = 10/group). At 14 days of age, piglets were used to prepare jejunal enterocytes. Cells were incubated at 37 °C for 30 min in oxygenated Krebs buffer containing 5 mM glucose, 2 mM [U-14C]proline, and 2 mM glutamine. Cortisol treatment increased plasma cortisol concentration, mitochondrial proline oxidase and N-acetylglutamate synthase activities, cytosolic argininosuccinate lyase activity, and the intracellular concentrations of N-acetylglutamate and carbamoyl phosphate for citrulline and arginine synthesis. However, cortisol treatment induced the expression of intestinal arginase-II for arginine hydrolysis, resulting in no change in plasma arginine concentration. Administration of cortisol had no effect on milk consumption or the whole-body growth rate of piglets, but increased villus height in the jejunum and ileum. Collectively, these results suggest an important role for proline oxidase and N-acetylglutamate in regulating citrulline and arginine synthesis from proline in pig enterocytes. Because proline catabolism plays an important role in modulating protein synthesis, cell proliferation, and arginine production, our findings may have important implications for understanding the role of proline oxidase in the growth and health of the mammalian small intestine.


Assuntos
Citrulina/metabolismo , Enterócitos/metabolismo , Hidrocortisona/metabolismo , Prolina/metabolismo , Animais , Animais Lactentes/metabolismo , Arginina/metabolismo , Proliferação de Células/fisiologia , Glutamina/metabolismo , Íleo/metabolismo , Jejuno/metabolismo , Masculino , Prolina Oxidase/metabolismo , Biossíntese de Proteínas/fisiologia , Suínos
19.
Infect Immun ; 89(10): e0024221, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34310890

RESUMO

Vibrio cholerae is a Gram-negative bacterium that causes the enteric disease cholera. V. cholerae colonization of the human intestine is dependent on the expression of both virulence genes and environmental adaptation genes involved in antimicrobial resistance. The expression of virulence genes, including the genes encoding the main virulence factors cholera toxin (CT) and the toxin-coregulated pilus (TCP), are coordinately regulated by the ToxR regulon. Tripartite transport systems belonging to the ATP binding cassette, major facilitator, and resistance-nodulation-division families are critical for V. cholerae pathogenesis. Transport systems belonging to these families contribute to myriad phenotypes, including protein secretion, antimicrobial resistance, and virulence. TolC plays a central role in bacterial physiology by functioning as the outer membrane pore protein for tripartite transport systems. Consistent with this, V. cholerae tolC was previously found to be required for MARTX toxin secretion and antimicrobial resistance. Here, we investigated the contribution of TolC to V. cholerae virulence. We documented that tolC was required for CT and TCP production in O1 El Tor V. cholerae. This phenotype was linked to repression of the critical ToxR regulon transcription factor aphA. Decreased aphA transcription correlated with increased expression of the LysR-family transcription factor leuO. Deletion of leuO restored aphA expression, and CT and TCP production, in a tolC mutant. The collective results document that tolC is required for ToxR regulon expression and further suggest that tolC participates in an efflux-dependent feedback circuit to regulate virulence gene expression.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Regulon/genética , Fatores de Transcrição/genética , Vibrio cholerae/genética , Animais , Cólera/microbiologia , Toxina da Cólera/genética , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/genética , Fenótipo , Suínos , Virulência/genética , Fatores de Virulência/genética
20.
J Toxicol Environ Health B Crit Rev ; 24(2): 51-94, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33616007

RESUMO

Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.


Assuntos
Caenorhabditis elegans/metabolismo , Preparações Farmacêuticas/metabolismo , Xenobióticos/metabolismo , Animais , Transporte Biológico/fisiologia , Ecotoxicologia/métodos , Humanos , Modelos Animais , Especificidade da Espécie , Toxicologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA